M. B. Pedersen, Astrid Særmark Uebel, K. Beedholm, Ilias Foskolos, Laura Stidsholt, P. Madsen
{"title":"回声定位道本顿的蝙蝠叫声更大,但在着陆任务中,对掩蔽噪声的波段没有表现出频谱干扰避免。","authors":"M. B. Pedersen, Astrid Særmark Uebel, K. Beedholm, Ilias Foskolos, Laura Stidsholt, P. Madsen","doi":"10.1242/jeb.243917","DOIUrl":null,"url":null,"abstract":"Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task.\",\"authors\":\"M. B. Pedersen, Astrid Særmark Uebel, K. Beedholm, Ilias Foskolos, Laura Stidsholt, P. Madsen\",\"doi\":\"10.1242/jeb.243917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.\",\"PeriodicalId\":22458,\"journal\":{\"name\":\"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.243917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jeb.243917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task.
Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.