基于深度神经网络的钻速最优模型的建立。

_ _
{"title":"基于深度神经网络的钻速最优模型的建立。","authors":"_ _","doi":"10.2118/207161-ms","DOIUrl":null,"url":null,"abstract":"\n For the past century, optimization of drilling has caught the eyes of many researchers. The main areas center on ROP, fluid treatment, and bit selection. They all share the same goal of maximizing ROP and reducing NPT. In other to develop an optimal control system, ROP must be predicted accurately, unfortunately, it is a complex parameter that is affected by multiple drilling parameters, rock properties, fluid properties, and bit selection. Models used for prediction have developed from empirical models like Bourgoyne and Young's to more intelligent models such as SVM and ANN. With the continuous increase in data obtained from sensors while drilling, there is still much work to be done in this field. In this research, the improvement of an empirical model and the development of an intelligent model are presented. The Bourgoyne and Young's model uses multiple linear regression to estimate coefficients which it then inserts into an empirical formula to predict ROP. This model was modified using non-linear curve-fitting to estimate the coefficients and make it reduce bias to generalize better. Machine learning models such as Gradient Boosting, Random Forest, ANN, and DNN were used in the development of a predictive model for the ROP. These models were easier to develop compared to the empirical model since they rely more on data rather than statistical formulas. The data used in this research include drilling data from 3 wells drilled in 2 fields within the Niger Delta region in Nigeria. The models were developed and trained on one of the wells, while the remaining two were used for testing the performance of the models. The modified empirical model improved the efficiency of the base model by 14% during validation but performs poorly on unseen data from the other two wells. The Machine learning models outperform the empirical models and perform accurately on unseen data from the other wells. DNN was the best performing model achieving an average accuracy of 0.987 for the 3 wells.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Optimal Model For Rate of Penetration Rop Using Deep Neural Networks DNN.\",\"authors\":\"_ _\",\"doi\":\"10.2118/207161-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For the past century, optimization of drilling has caught the eyes of many researchers. The main areas center on ROP, fluid treatment, and bit selection. They all share the same goal of maximizing ROP and reducing NPT. In other to develop an optimal control system, ROP must be predicted accurately, unfortunately, it is a complex parameter that is affected by multiple drilling parameters, rock properties, fluid properties, and bit selection. Models used for prediction have developed from empirical models like Bourgoyne and Young's to more intelligent models such as SVM and ANN. With the continuous increase in data obtained from sensors while drilling, there is still much work to be done in this field. In this research, the improvement of an empirical model and the development of an intelligent model are presented. The Bourgoyne and Young's model uses multiple linear regression to estimate coefficients which it then inserts into an empirical formula to predict ROP. This model was modified using non-linear curve-fitting to estimate the coefficients and make it reduce bias to generalize better. Machine learning models such as Gradient Boosting, Random Forest, ANN, and DNN were used in the development of a predictive model for the ROP. These models were easier to develop compared to the empirical model since they rely more on data rather than statistical formulas. The data used in this research include drilling data from 3 wells drilled in 2 fields within the Niger Delta region in Nigeria. The models were developed and trained on one of the wells, while the remaining two were used for testing the performance of the models. The modified empirical model improved the efficiency of the base model by 14% during validation but performs poorly on unseen data from the other two wells. The Machine learning models outperform the empirical models and perform accurately on unseen data from the other wells. DNN was the best performing model achieving an average accuracy of 0.987 for the 3 wells.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207161-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207161-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的一个世纪里,钻井的优化引起了许多研究者的关注。主要领域集中在ROP、流体处理和钻头选择上。它们都有相同的目标,即最大化ROP和减少NPT。另一方面,为了开发最优控制系统,必须准确预测机械钻速,不幸的是,它是一个复杂的参数,受多种钻井参数、岩石性质、流体性质和钻头选择的影响。用于预测的模型已经从像Bourgoyne和Young的经验模型发展到更智能的模型,如SVM和ANN。随着钻井过程中从传感器获取的数据不断增加,该领域仍有许多工作要做。在本研究中,提出了经验模型的改进和智能模型的开发。Bourgoyne和Young的模型使用多元线性回归来估计系数,然后将其插入经验公式来预测ROP。采用非线性曲线拟合方法对模型进行修正,估计系数,减小偏差,更好地进行泛化。机器学习模型(如梯度增强、随机森林、人工神经网络和深度神经网络)被用于开发ROP的预测模型。与经验模型相比,这些模型更容易开发,因为它们更多地依赖于数据而不是统计公式。本研究使用的数据包括尼日利亚尼日尔三角洲地区2个油田的3口井的钻井数据。这些模型是在其中一口井上开发和训练的,而其余两口井则用于测试模型的性能。修正后的经验模型在验证过程中将基本模型的效率提高了14%,但在处理其他两口井的未见数据时表现不佳。机器学习模型优于经验模型,并且能够准确地处理来自其他井的未知数据。DNN是表现最好的模型,3口井的平均精度为0.987。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an Optimal Model For Rate of Penetration Rop Using Deep Neural Networks DNN.
For the past century, optimization of drilling has caught the eyes of many researchers. The main areas center on ROP, fluid treatment, and bit selection. They all share the same goal of maximizing ROP and reducing NPT. In other to develop an optimal control system, ROP must be predicted accurately, unfortunately, it is a complex parameter that is affected by multiple drilling parameters, rock properties, fluid properties, and bit selection. Models used for prediction have developed from empirical models like Bourgoyne and Young's to more intelligent models such as SVM and ANN. With the continuous increase in data obtained from sensors while drilling, there is still much work to be done in this field. In this research, the improvement of an empirical model and the development of an intelligent model are presented. The Bourgoyne and Young's model uses multiple linear regression to estimate coefficients which it then inserts into an empirical formula to predict ROP. This model was modified using non-linear curve-fitting to estimate the coefficients and make it reduce bias to generalize better. Machine learning models such as Gradient Boosting, Random Forest, ANN, and DNN were used in the development of a predictive model for the ROP. These models were easier to develop compared to the empirical model since they rely more on data rather than statistical formulas. The data used in this research include drilling data from 3 wells drilled in 2 fields within the Niger Delta region in Nigeria. The models were developed and trained on one of the wells, while the remaining two were used for testing the performance of the models. The modified empirical model improved the efficiency of the base model by 14% during validation but performs poorly on unseen data from the other two wells. The Machine learning models outperform the empirical models and perform accurately on unseen data from the other wells. DNN was the best performing model achieving an average accuracy of 0.987 for the 3 wells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Production and Performance Evaluation of Biodetergents as an Alternative to Conventional Drilling Detergent Comparative Evaluation of Artificial Intelligence Models for Drilling Rate of Penetration Prediction The Limitation of Reservoir Saturation Logging Tool in a Case of a Deeper Reservoir Flow into a Shallower Reservoir Within the Same Wellbore Surrogate-Based Analysis of Chemical Enhanced Oil Recovery – A Comparative Analysis of Machine Learning Model Performance Understanding the Impacts of Backpressure & Risk Analysis of Different Gas Hydrate Blockage Scenarios on the Integrity of Subsea Flowlines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1