F. Vignola, J. Peterson, F. Mavromatakis, S. Wilbert, Anne Forstinger, M. Dooraghi, M. Sengupta
{"title":"消除旋转阴影带辐射计的偏差","authors":"F. Vignola, J. Peterson, F. Mavromatakis, S. Wilbert, Anne Forstinger, M. Dooraghi, M. Sengupta","doi":"10.1063/1.5117714","DOIUrl":null,"url":null,"abstract":"Three types of biases are examined for a Rotating Shadowband Radiometer (RSR): temperature bias, spectral bias, and deviation from a Lambertian cosine response. A step by step method is presented to illustrate how to use this information to develop a model for adjustment algorithms for a RSR. Comparisons are made with a RSR adjusted using the model and measure direct normal, diffuse, and global irradiance.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Removing biases from rotating shadowband radiometers\",\"authors\":\"F. Vignola, J. Peterson, F. Mavromatakis, S. Wilbert, Anne Forstinger, M. Dooraghi, M. Sengupta\",\"doi\":\"10.1063/1.5117714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three types of biases are examined for a Rotating Shadowband Radiometer (RSR): temperature bias, spectral bias, and deviation from a Lambertian cosine response. A step by step method is presented to illustrate how to use this information to develop a model for adjustment algorithms for a RSR. Comparisons are made with a RSR adjusted using the model and measure direct normal, diffuse, and global irradiance.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Removing biases from rotating shadowband radiometers
Three types of biases are examined for a Rotating Shadowband Radiometer (RSR): temperature bias, spectral bias, and deviation from a Lambertian cosine response. A step by step method is presented to illustrate how to use this information to develop a model for adjustment algorithms for a RSR. Comparisons are made with a RSR adjusted using the model and measure direct normal, diffuse, and global irradiance.