使用不重叠的多个摄像头进行人员跟踪

S. K. Sonbhadra, Sonali Agarwal, M. Syafrullah, K. Adiyarta
{"title":"使用不重叠的多个摄像头进行人员跟踪","authors":"S. K. Sonbhadra, Sonali Agarwal, M. Syafrullah, K. Adiyarta","doi":"10.23919/EECSI50503.2020.9251869","DOIUrl":null,"url":null,"abstract":"Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"06 1","pages":"137-143"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Person tracking with non-overlapping multiple cameras\",\"authors\":\"S. K. Sonbhadra, Sonali Agarwal, M. Syafrullah, K. Adiyarta\",\"doi\":\"10.23919/EECSI50503.2020.9251869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification.\",\"PeriodicalId\":6743,\"journal\":{\"name\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"volume\":\"06 1\",\"pages\":\"137-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EECSI50503.2020.9251869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在监视系统中,对任何目标的监视和跟踪都是一项重要的任务。当这些目标是人类时,这个问题就涉及到人的识别和跟踪。目前,大型智能视频监控系统是任何商业或公共校园必不可少的组成部分。由于相机的视野(FOV)是有限的;对于大面积的监控,需要在不同的位置安装多个摄像机。本文提出了一种在多个不重叠摄像机下跟踪一个人的新模型。它在跟踪系统开始时建立人的参考签名,并借助两台相机之间训练好的支持向量机(SVM)与指定观察区域内其他相机捕捉到的即将到来的签名进行匹配。在实验中,利用广域再识别数据集(WARD)和具有颜色、形状和纹理特征的实时场景对人进行再识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Person tracking with non-overlapping multiple cameras
Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquatic Iguana: A Floating Waste Collecting Robot with IoT Based Water Monitoring System Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm A Wireless ECG Device with Mobile Applications for Android Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1