{"title":"压力对微球光刻中可重复使用自组装微球掩模的影响","authors":"Chen Zhu, E. Kinzel","doi":"10.1115/msec2022-85165","DOIUrl":null,"url":null,"abstract":"\n Microsphere photolithography (MPL) has shown promise for the low-cost large-scale manufacturing of infrared (IR) metasurfaces. One challenge of the technique is that the microsphere array needs to be in immediate proximity to the photoresist because of the near-filed effect of the photonic jet. This is typically accomplished by directly transferring the microsphere array onto the photoresist layer. The microspheres are then washed away during the development of the photoresist. While there may be a possibility of recovering, cleaning, and reusing the microspheres, this is not typically done. This work studies the self-assembly of the microspheres on a superstrate which can be reused as a contact mask. The microspheres are fixed to this superstrate to minimize debonding when they are brought into contact with the substrate. IR metasurfaces are fabricated and spectrally characterized. The resonant wavelength of IR metasurfaces is shown to be a good statistical metric for the variation of the patterned surface. The results indicate pressure between the substrate and superstrate is a critical factor in maintaining a minimum gap between the microspheres and photoresist. This work shows a way forward for mask-based microsphere photolithography and provides guidance for future microlens array-based photolithographic techniques.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Pressure on Reusable Self-Assembled Microsphere Masks for Microsphere Photolithography\",\"authors\":\"Chen Zhu, E. Kinzel\",\"doi\":\"10.1115/msec2022-85165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Microsphere photolithography (MPL) has shown promise for the low-cost large-scale manufacturing of infrared (IR) metasurfaces. One challenge of the technique is that the microsphere array needs to be in immediate proximity to the photoresist because of the near-filed effect of the photonic jet. This is typically accomplished by directly transferring the microsphere array onto the photoresist layer. The microspheres are then washed away during the development of the photoresist. While there may be a possibility of recovering, cleaning, and reusing the microspheres, this is not typically done. This work studies the self-assembly of the microspheres on a superstrate which can be reused as a contact mask. The microspheres are fixed to this superstrate to minimize debonding when they are brought into contact with the substrate. IR metasurfaces are fabricated and spectrally characterized. The resonant wavelength of IR metasurfaces is shown to be a good statistical metric for the variation of the patterned surface. The results indicate pressure between the substrate and superstrate is a critical factor in maintaining a minimum gap between the microspheres and photoresist. This work shows a way forward for mask-based microsphere photolithography and provides guidance for future microlens array-based photolithographic techniques.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Effects of Pressure on Reusable Self-Assembled Microsphere Masks for Microsphere Photolithography
Microsphere photolithography (MPL) has shown promise for the low-cost large-scale manufacturing of infrared (IR) metasurfaces. One challenge of the technique is that the microsphere array needs to be in immediate proximity to the photoresist because of the near-filed effect of the photonic jet. This is typically accomplished by directly transferring the microsphere array onto the photoresist layer. The microspheres are then washed away during the development of the photoresist. While there may be a possibility of recovering, cleaning, and reusing the microspheres, this is not typically done. This work studies the self-assembly of the microspheres on a superstrate which can be reused as a contact mask. The microspheres are fixed to this superstrate to minimize debonding when they are brought into contact with the substrate. IR metasurfaces are fabricated and spectrally characterized. The resonant wavelength of IR metasurfaces is shown to be a good statistical metric for the variation of the patterned surface. The results indicate pressure between the substrate and superstrate is a critical factor in maintaining a minimum gap between the microspheres and photoresist. This work shows a way forward for mask-based microsphere photolithography and provides guidance for future microlens array-based photolithographic techniques.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.