{"title":"电池电动拖拉机动力总成部件尺寸与能耗、驱动模式和使用牵引电机的性能评估","authors":"Chandrasekhar Reddy Gade, W. Sultana","doi":"10.13052/dgaej2156-3306.3834","DOIUrl":null,"url":null,"abstract":"In this paper sizing the powertrain of battery electric tractor (BET) including major farming implements are investigated for various real world driving patterns. Powertrain components are modelled using torque-load characteristics which are function of speed, acceleration, plowing implement and depth of plowing and texture of the soil. Effect of load variations on powertrain performance and energy consumption are also explained in detail. In this powertrain design major farming implements like chisel plough, mould board plough, field cultivator, sweep plough are considered. Tractor hauling a trailer carrying goods with 2000 kg weight is also considered for powertrain design. Typical operating velocities of 18, 15 and 25 kmph are taken for sand, tillage and asphalt surfaces respectively for tractor trailer applications and 7 kmph for plowing applications. The dynamic model of the powertrain is modelled in MATLAB/SIMULINK. PMSM is selected as a traction motor and its performance is evaluated in MATLAB/SIMULINK. Same has been verified using real-time Hardware in loop (HIL) simulator with help of OPAL-RT (OP5700).","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"147 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Battery Electric Tractor Powertrain Component Sizing With Respect To Energy Consumption, Driving Patterns and Performance Evaluation Using Traction Motor\",\"authors\":\"Chandrasekhar Reddy Gade, W. Sultana\",\"doi\":\"10.13052/dgaej2156-3306.3834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper sizing the powertrain of battery electric tractor (BET) including major farming implements are investigated for various real world driving patterns. Powertrain components are modelled using torque-load characteristics which are function of speed, acceleration, plowing implement and depth of plowing and texture of the soil. Effect of load variations on powertrain performance and energy consumption are also explained in detail. In this powertrain design major farming implements like chisel plough, mould board plough, field cultivator, sweep plough are considered. Tractor hauling a trailer carrying goods with 2000 kg weight is also considered for powertrain design. Typical operating velocities of 18, 15 and 25 kmph are taken for sand, tillage and asphalt surfaces respectively for tractor trailer applications and 7 kmph for plowing applications. The dynamic model of the powertrain is modelled in MATLAB/SIMULINK. PMSM is selected as a traction motor and its performance is evaluated in MATLAB/SIMULINK. Same has been verified using real-time Hardware in loop (HIL) simulator with help of OPAL-RT (OP5700).\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Battery Electric Tractor Powertrain Component Sizing With Respect To Energy Consumption, Driving Patterns and Performance Evaluation Using Traction Motor
In this paper sizing the powertrain of battery electric tractor (BET) including major farming implements are investigated for various real world driving patterns. Powertrain components are modelled using torque-load characteristics which are function of speed, acceleration, plowing implement and depth of plowing and texture of the soil. Effect of load variations on powertrain performance and energy consumption are also explained in detail. In this powertrain design major farming implements like chisel plough, mould board plough, field cultivator, sweep plough are considered. Tractor hauling a trailer carrying goods with 2000 kg weight is also considered for powertrain design. Typical operating velocities of 18, 15 and 25 kmph are taken for sand, tillage and asphalt surfaces respectively for tractor trailer applications and 7 kmph for plowing applications. The dynamic model of the powertrain is modelled in MATLAB/SIMULINK. PMSM is selected as a traction motor and its performance is evaluated in MATLAB/SIMULINK. Same has been verified using real-time Hardware in loop (HIL) simulator with help of OPAL-RT (OP5700).