Abera Abdeta, A. Bitew, Surafel Fentaw, Estifanos Tsige, D. Assefa, E. Tigabu, T. Lejisa, Yordanos Kefyalew, Ebisa Fekede
{"title":"三种增谱β-内酰胺酶检测表型技术的诊断能力","authors":"Abera Abdeta, A. Bitew, Surafel Fentaw, Estifanos Tsige, D. Assefa, E. Tigabu, T. Lejisa, Yordanos Kefyalew, Ebisa Fekede","doi":"10.34172/ajcmi.2022.01","DOIUrl":null,"url":null,"abstract":"Background: Early detection of extended-spectrum β-lactamases (ESBLs) producing bacteria is critical for infection prevention and control. Numerous phenotypic approaches and automated systems have been developed for detecting ESBL bacteria. However, there is a scarcity of data in Ethiopia regarding the most reliable, simple, and cost-effective methods for detecting ESBL-producing bacteria. This study, therefore, aimed to evaluate the diagnostic performance of three phenotypic approaches for detecting ESBL-producing bacteria. Methods: In this study, 117 isolates of Klebsiella pneumoniae, Escherichia coli, Klebsiella oxytoca, and Proteus mirabilis were examined. Cefotaxime (30 µg) and ceftazidime (30 µg) were used for screening ESBL enzymes. A screening breakpoints of≤27 mm and≤22 mm were used for cefotaxime (30 µg) and ceftazidime (30 µg), respectively, as per the Clinical and Laboratory Standards Institute (CLSI) guidelines. All 117 strains were further confirmed by the Vitek 2 compact, double disk synergy, ESBL Epsilometer test, and combined disk method. The combined disk method was adopted as the reference method. Results: Out of 117 isolates, 90 (86%) had zone diameters of≤27 mm and≤22 mm for cefotaxime (30 µg) and ceftazidime (30 µg), respectively. The reference method detected 76 (65%) ESBL isolates out of 117 ones. From among the three techniques (i.e., double disk synergy, Vitek 2 compact, and ESBL Epsilometer test), the double disk synergy method demonstrated overall sensitivity and specificity of 97.4% and 97.6%, respectively. Vitek-2, cefotaxime, and ceftazidime Epsilometer test indicated indeterminate results of 6.8%, 6.8%, and 5.1% respectively. Conclusion: Double disk synergy was found to have the highest sensitivity and specificity for detecting ESBL isolates with no indeterminate results.","PeriodicalId":8689,"journal":{"name":"Avicenna Journal of Clinical Microbiology and Infection","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Diagnostic Capacity of Three Phenotypic Techniques of Extended-Spectrum β-Lactamase Detection\",\"authors\":\"Abera Abdeta, A. Bitew, Surafel Fentaw, Estifanos Tsige, D. Assefa, E. Tigabu, T. Lejisa, Yordanos Kefyalew, Ebisa Fekede\",\"doi\":\"10.34172/ajcmi.2022.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Early detection of extended-spectrum β-lactamases (ESBLs) producing bacteria is critical for infection prevention and control. Numerous phenotypic approaches and automated systems have been developed for detecting ESBL bacteria. However, there is a scarcity of data in Ethiopia regarding the most reliable, simple, and cost-effective methods for detecting ESBL-producing bacteria. This study, therefore, aimed to evaluate the diagnostic performance of three phenotypic approaches for detecting ESBL-producing bacteria. Methods: In this study, 117 isolates of Klebsiella pneumoniae, Escherichia coli, Klebsiella oxytoca, and Proteus mirabilis were examined. Cefotaxime (30 µg) and ceftazidime (30 µg) were used for screening ESBL enzymes. A screening breakpoints of≤27 mm and≤22 mm were used for cefotaxime (30 µg) and ceftazidime (30 µg), respectively, as per the Clinical and Laboratory Standards Institute (CLSI) guidelines. All 117 strains were further confirmed by the Vitek 2 compact, double disk synergy, ESBL Epsilometer test, and combined disk method. The combined disk method was adopted as the reference method. Results: Out of 117 isolates, 90 (86%) had zone diameters of≤27 mm and≤22 mm for cefotaxime (30 µg) and ceftazidime (30 µg), respectively. The reference method detected 76 (65%) ESBL isolates out of 117 ones. From among the three techniques (i.e., double disk synergy, Vitek 2 compact, and ESBL Epsilometer test), the double disk synergy method demonstrated overall sensitivity and specificity of 97.4% and 97.6%, respectively. Vitek-2, cefotaxime, and ceftazidime Epsilometer test indicated indeterminate results of 6.8%, 6.8%, and 5.1% respectively. Conclusion: Double disk synergy was found to have the highest sensitivity and specificity for detecting ESBL isolates with no indeterminate results.\",\"PeriodicalId\":8689,\"journal\":{\"name\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ajcmi.2022.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Clinical Microbiology and Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ajcmi.2022.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Diagnostic Capacity of Three Phenotypic Techniques of Extended-Spectrum β-Lactamase Detection
Background: Early detection of extended-spectrum β-lactamases (ESBLs) producing bacteria is critical for infection prevention and control. Numerous phenotypic approaches and automated systems have been developed for detecting ESBL bacteria. However, there is a scarcity of data in Ethiopia regarding the most reliable, simple, and cost-effective methods for detecting ESBL-producing bacteria. This study, therefore, aimed to evaluate the diagnostic performance of three phenotypic approaches for detecting ESBL-producing bacteria. Methods: In this study, 117 isolates of Klebsiella pneumoniae, Escherichia coli, Klebsiella oxytoca, and Proteus mirabilis were examined. Cefotaxime (30 µg) and ceftazidime (30 µg) were used for screening ESBL enzymes. A screening breakpoints of≤27 mm and≤22 mm were used for cefotaxime (30 µg) and ceftazidime (30 µg), respectively, as per the Clinical and Laboratory Standards Institute (CLSI) guidelines. All 117 strains were further confirmed by the Vitek 2 compact, double disk synergy, ESBL Epsilometer test, and combined disk method. The combined disk method was adopted as the reference method. Results: Out of 117 isolates, 90 (86%) had zone diameters of≤27 mm and≤22 mm for cefotaxime (30 µg) and ceftazidime (30 µg), respectively. The reference method detected 76 (65%) ESBL isolates out of 117 ones. From among the three techniques (i.e., double disk synergy, Vitek 2 compact, and ESBL Epsilometer test), the double disk synergy method demonstrated overall sensitivity and specificity of 97.4% and 97.6%, respectively. Vitek-2, cefotaxime, and ceftazidime Epsilometer test indicated indeterminate results of 6.8%, 6.8%, and 5.1% respectively. Conclusion: Double disk synergy was found to have the highest sensitivity and specificity for detecting ESBL isolates with no indeterminate results.