Abdelrahman Amin, A. Bibo, Meghashyam Panyam, Phanindra Tallapragada
{"title":"基于振动的风力发电机行星齿轮箱故障诊断","authors":"Abdelrahman Amin, A. Bibo, Meghashyam Panyam, Phanindra Tallapragada","doi":"10.1177/0309524X221123968","DOIUrl":null,"url":null,"abstract":"To reduce wind turbine operations and maintenance costs, we present a machine learning framework for early damage detection in gearboxes based on the cyclostationary and kurtogram analysis of sensor data. The application focus is fault diagnostics in gearboxes under varying load conditions, particularly turbulent wind. Faults in the gearbox rotating components can leave their signatures in vibrations signals measured by accelerometers. We analyze data stemming from a simulated vibration response of a 5 MW multibody wind turbine model in a healthy and damaged scenarios and under different wind conditions. With cyclostationary and kurtogram analysis applied on acquired sensor data, we generate two types of 2D maps that highlight signatures related to the fault damage. Using these maps, convolutional neural networks are trained to identify faults, including those of small magnitude, in test data with a high accuracy. Benchmark test cases inspired by an NREL study are tested and faults successfully detected.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"9 1","pages":"175 - 189"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vibration based fault diagnostics in a wind turbine planetary gearbox using machine learning\",\"authors\":\"Abdelrahman Amin, A. Bibo, Meghashyam Panyam, Phanindra Tallapragada\",\"doi\":\"10.1177/0309524X221123968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce wind turbine operations and maintenance costs, we present a machine learning framework for early damage detection in gearboxes based on the cyclostationary and kurtogram analysis of sensor data. The application focus is fault diagnostics in gearboxes under varying load conditions, particularly turbulent wind. Faults in the gearbox rotating components can leave their signatures in vibrations signals measured by accelerometers. We analyze data stemming from a simulated vibration response of a 5 MW multibody wind turbine model in a healthy and damaged scenarios and under different wind conditions. With cyclostationary and kurtogram analysis applied on acquired sensor data, we generate two types of 2D maps that highlight signatures related to the fault damage. Using these maps, convolutional neural networks are trained to identify faults, including those of small magnitude, in test data with a high accuracy. Benchmark test cases inspired by an NREL study are tested and faults successfully detected.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"9 1\",\"pages\":\"175 - 189\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221123968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221123968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Vibration based fault diagnostics in a wind turbine planetary gearbox using machine learning
To reduce wind turbine operations and maintenance costs, we present a machine learning framework for early damage detection in gearboxes based on the cyclostationary and kurtogram analysis of sensor data. The application focus is fault diagnostics in gearboxes under varying load conditions, particularly turbulent wind. Faults in the gearbox rotating components can leave their signatures in vibrations signals measured by accelerometers. We analyze data stemming from a simulated vibration response of a 5 MW multibody wind turbine model in a healthy and damaged scenarios and under different wind conditions. With cyclostationary and kurtogram analysis applied on acquired sensor data, we generate two types of 2D maps that highlight signatures related to the fault damage. Using these maps, convolutional neural networks are trained to identify faults, including those of small magnitude, in test data with a high accuracy. Benchmark test cases inspired by an NREL study are tested and faults successfully detected.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.