基于直方图的非对称重标注学习方法

Tom Arjannikov, G. Tzanetakis
{"title":"基于直方图的非对称重标注学习方法","authors":"Tom Arjannikov, G. Tzanetakis","doi":"10.1109/ICMLA.2017.000-8","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate how to use asymmetric data relabeling based on feature histograms as a pre-processing step for improving the overall classification performance of different classifiers in situations when only positive and unlabeled data is available. Additionally, this strategy can be used to identify with some level of confidence those data instances that should probably be labeled as positive. Moreover, this approach can be adapted to assess the quality of a given dataset, in terms of how many positive instances are not labeled. We examine our approach using synthetic data and demonstrate its applicability using real, publicly available data.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"21 1","pages":"1065-1070"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histogram-Based Asymmetric Relabeling for Learning from Only Positive and Unlabeled Data\",\"authors\":\"Tom Arjannikov, G. Tzanetakis\",\"doi\":\"10.1109/ICMLA.2017.000-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate how to use asymmetric data relabeling based on feature histograms as a pre-processing step for improving the overall classification performance of different classifiers in situations when only positive and unlabeled data is available. Additionally, this strategy can be used to identify with some level of confidence those data instances that should probably be labeled as positive. Moreover, this approach can be adapted to assess the quality of a given dataset, in terms of how many positive instances are not labeled. We examine our approach using synthetic data and demonstrate its applicability using real, publicly available data.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"21 1\",\"pages\":\"1065-1070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.000-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.000-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们演示了如何使用基于特征直方图的非对称数据重标注作为预处理步骤,以提高不同分类器在只有阳性和未标记数据可用的情况下的整体分类性能。此外,该策略可用于在一定程度上确定那些可能应该标记为积极的数据实例。此外,这种方法可以用于评估给定数据集的质量,即有多少正面实例没有被标记。我们使用合成数据来检验我们的方法,并使用真实的、公开的数据来证明它的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histogram-Based Asymmetric Relabeling for Learning from Only Positive and Unlabeled Data
In this paper, we demonstrate how to use asymmetric data relabeling based on feature histograms as a pre-processing step for improving the overall classification performance of different classifiers in situations when only positive and unlabeled data is available. Additionally, this strategy can be used to identify with some level of confidence those data instances that should probably be labeled as positive. Moreover, this approach can be adapted to assess the quality of a given dataset, in terms of how many positive instances are not labeled. We examine our approach using synthetic data and demonstrate its applicability using real, publicly available data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1