不规则几何图形三维匹配的点采样算法

Tolga Birdal, Slobodan Ilic
{"title":"不规则几何图形三维匹配的点采样算法","authors":"Tolga Birdal, Slobodan Ilic","doi":"10.1109/IROS.2017.8206609","DOIUrl":null,"url":null,"abstract":"We present a 3D mesh re-sampling algorithm, carefully tailored for 3D object detection using point pair features (PPF). Computing a sparse representation of objects is critical for the success of state-of-the-art object detection, recognition and pose estimation methods. Yet, sparsity needs to preserve fidelity. To this end, we develop a simple, yet very effective point sampling strategy for detection of any CAD model through geometric hashing. Our approach relies on rendering the object coordinates from a set of views evenly distributed on a sphere. Actual sampling takes place on 2D domain over these renderings; the resulting samples are efficiently merged in 3D with the aid of a special voxel structure and relaxed with Lloyd iterations. The generated vertices are not concentrated only on critical points, as in many keypoint extraction algorithms, and there is even spacing between selected vertices. This is valuable for quantization based detection methods, such as geometric hashing of point pair features. The algorithm is fast and can easily handle the elongated/acute triangles and sharp edges typically existent in industrial CAD models, while automatically pruning the invisible structures. We do not introduce structural changes such as smoothing or interpolation and sample the normals on the original CAD model, achieving the maximum fidelity. We demonstrate the strength of this approach on 3D object detection in comparison to similar sampling algorithms.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"80 1","pages":"6871-6878"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A point sampling algorithm for 3D matching of irregular geometries\",\"authors\":\"Tolga Birdal, Slobodan Ilic\",\"doi\":\"10.1109/IROS.2017.8206609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a 3D mesh re-sampling algorithm, carefully tailored for 3D object detection using point pair features (PPF). Computing a sparse representation of objects is critical for the success of state-of-the-art object detection, recognition and pose estimation methods. Yet, sparsity needs to preserve fidelity. To this end, we develop a simple, yet very effective point sampling strategy for detection of any CAD model through geometric hashing. Our approach relies on rendering the object coordinates from a set of views evenly distributed on a sphere. Actual sampling takes place on 2D domain over these renderings; the resulting samples are efficiently merged in 3D with the aid of a special voxel structure and relaxed with Lloyd iterations. The generated vertices are not concentrated only on critical points, as in many keypoint extraction algorithms, and there is even spacing between selected vertices. This is valuable for quantization based detection methods, such as geometric hashing of point pair features. The algorithm is fast and can easily handle the elongated/acute triangles and sharp edges typically existent in industrial CAD models, while automatically pruning the invisible structures. We do not introduce structural changes such as smoothing or interpolation and sample the normals on the original CAD model, achieving the maximum fidelity. We demonstrate the strength of this approach on 3D object detection in comparison to similar sampling algorithms.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"80 1\",\"pages\":\"6871-6878\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了一种3D网格重采样算法,该算法针对使用点对特征(PPF)的3D物体检测进行了精心定制。计算物体的稀疏表示对于最先进的物体检测、识别和姿态估计方法的成功至关重要。然而,稀疏性需要保持保真度。为此,我们开发了一种简单但非常有效的点采样策略,用于通过几何散列检测任何CAD模型。我们的方法依赖于从一组均匀分布在球体上的视图中渲染物体坐标。实际采样发生在这些渲染图的2D域上;通过特殊的体素结构,得到的样本在3D中有效地合并,并通过Lloyd迭代放松。生成的顶点不像许多关键点提取算法那样只集中在临界点上,而且所选顶点之间甚至存在间隔。这对于基于量化的检测方法是有价值的,例如点对特征的几何哈希。该算法速度快,可以轻松处理工业CAD模型中常见的细长/锐角三角形和锐边,同时自动修剪不可见结构。我们没有引入结构变化,例如平滑或插值,并对原始CAD模型的法线进行采样,以实现最大的保真度。与类似的采样算法相比,我们展示了这种方法在3D物体检测上的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A point sampling algorithm for 3D matching of irregular geometries
We present a 3D mesh re-sampling algorithm, carefully tailored for 3D object detection using point pair features (PPF). Computing a sparse representation of objects is critical for the success of state-of-the-art object detection, recognition and pose estimation methods. Yet, sparsity needs to preserve fidelity. To this end, we develop a simple, yet very effective point sampling strategy for detection of any CAD model through geometric hashing. Our approach relies on rendering the object coordinates from a set of views evenly distributed on a sphere. Actual sampling takes place on 2D domain over these renderings; the resulting samples are efficiently merged in 3D with the aid of a special voxel structure and relaxed with Lloyd iterations. The generated vertices are not concentrated only on critical points, as in many keypoint extraction algorithms, and there is even spacing between selected vertices. This is valuable for quantization based detection methods, such as geometric hashing of point pair features. The algorithm is fast and can easily handle the elongated/acute triangles and sharp edges typically existent in industrial CAD models, while automatically pruning the invisible structures. We do not introduce structural changes such as smoothing or interpolation and sample the normals on the original CAD model, achieving the maximum fidelity. We demonstrate the strength of this approach on 3D object detection in comparison to similar sampling algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1