{"title":"一类新的基于能量的旋转机械臂控制律:跟踪控制、鲁棒增强和自适应控制","authors":"J. Wen, K. Kreutz, D. Bayard","doi":"10.23919/ACC.1988.4790014","DOIUrl":null,"url":null,"abstract":"A new class of joint level control laws for all-revolute robot arms is introduced in this paper. The analysis is similar to the recently proposed energy Lyapunov function approach [1, 2], except that the closed loop potential function is shaped in accordance with the underlying joint space topology. By using energy Lyapunov functions with the modified potential energy, a much simpler analysis can be employed to show closed loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction, and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the non-adaptive control laws by their estimates.","PeriodicalId":6395,"journal":{"name":"1988 American Control Conference","volume":"53 1","pages":"1776-1781"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A New Class of Energy Based Control Laws for Revolute Robot Arms: Tracking Control, Robustness Enhancement and Adaptive Control\",\"authors\":\"J. Wen, K. Kreutz, D. Bayard\",\"doi\":\"10.23919/ACC.1988.4790014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new class of joint level control laws for all-revolute robot arms is introduced in this paper. The analysis is similar to the recently proposed energy Lyapunov function approach [1, 2], except that the closed loop potential function is shaped in accordance with the underlying joint space topology. By using energy Lyapunov functions with the modified potential energy, a much simpler analysis can be employed to show closed loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction, and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the non-adaptive control laws by their estimates.\",\"PeriodicalId\":6395,\"journal\":{\"name\":\"1988 American Control Conference\",\"volume\":\"53 1\",\"pages\":\"1776-1781\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1988 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1988.4790014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1988 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1988.4790014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Class of Energy Based Control Laws for Revolute Robot Arms: Tracking Control, Robustness Enhancement and Adaptive Control
A new class of joint level control laws for all-revolute robot arms is introduced in this paper. The analysis is similar to the recently proposed energy Lyapunov function approach [1, 2], except that the closed loop potential function is shaped in accordance with the underlying joint space topology. By using energy Lyapunov functions with the modified potential energy, a much simpler analysis can be employed to show closed loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction, and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the non-adaptive control laws by their estimates.