{"title":"MuHeQA:基于多个异构知识库的零概率问答","authors":"Carlos Badenes-Olmedo, Óscar Corcho","doi":"10.3233/sw-233379","DOIUrl":null,"url":null,"abstract":"There are two main limitations in most of the existing Knowledge Graph Question Answering (KGQA) algorithms. First, the approaches depend heavily on the structure and cannot be easily adapted to other KGs. Second, the availability and amount of additional domain-specific data in structured or unstructured formats has also proven to be critical in many of these systems. Such dependencies limit the applicability of KGQA systems and make their adoption difficult. A novel algorithm is proposed, MuHeQA, that alleviates both limitations by retrieving the answer from textual content automatically generated from KGs instead of queries over them. This new approach (1) works on one or several KGs simultaneously, (2) does not require training data what makes it is domain-independent, (3) enables the combination of knowledge graphs with unstructured information sources to build the answer, and (4) reduces the dependency on the underlying schema since it does not navigate through structured content but only reads property values. MuHeQA extracts answers from textual summaries created by combining information related to the question from multiple knowledge bases, be them structured or not. Experiments over Wikidata and DBpedia show that our approach achieves comparable performance to other approaches in single-fact questions while being domain and KG independent. Results raise important questions for future work about how the textual content that can be created from knowledge graphs enables answer extraction.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"86 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MuHeQA: Zero-shot question answering over multiple and heterogeneous knowledge bases\",\"authors\":\"Carlos Badenes-Olmedo, Óscar Corcho\",\"doi\":\"10.3233/sw-233379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two main limitations in most of the existing Knowledge Graph Question Answering (KGQA) algorithms. First, the approaches depend heavily on the structure and cannot be easily adapted to other KGs. Second, the availability and amount of additional domain-specific data in structured or unstructured formats has also proven to be critical in many of these systems. Such dependencies limit the applicability of KGQA systems and make their adoption difficult. A novel algorithm is proposed, MuHeQA, that alleviates both limitations by retrieving the answer from textual content automatically generated from KGs instead of queries over them. This new approach (1) works on one or several KGs simultaneously, (2) does not require training data what makes it is domain-independent, (3) enables the combination of knowledge graphs with unstructured information sources to build the answer, and (4) reduces the dependency on the underlying schema since it does not navigate through structured content but only reads property values. MuHeQA extracts answers from textual summaries created by combining information related to the question from multiple knowledge bases, be them structured or not. Experiments over Wikidata and DBpedia show that our approach achieves comparable performance to other approaches in single-fact questions while being domain and KG independent. Results raise important questions for future work about how the textual content that can be created from knowledge graphs enables answer extraction.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233379\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233379","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MuHeQA: Zero-shot question answering over multiple and heterogeneous knowledge bases
There are two main limitations in most of the existing Knowledge Graph Question Answering (KGQA) algorithms. First, the approaches depend heavily on the structure and cannot be easily adapted to other KGs. Second, the availability and amount of additional domain-specific data in structured or unstructured formats has also proven to be critical in many of these systems. Such dependencies limit the applicability of KGQA systems and make their adoption difficult. A novel algorithm is proposed, MuHeQA, that alleviates both limitations by retrieving the answer from textual content automatically generated from KGs instead of queries over them. This new approach (1) works on one or several KGs simultaneously, (2) does not require training data what makes it is domain-independent, (3) enables the combination of knowledge graphs with unstructured information sources to build the answer, and (4) reduces the dependency on the underlying schema since it does not navigate through structured content but only reads property values. MuHeQA extracts answers from textual summaries created by combining information related to the question from multiple knowledge bases, be them structured or not. Experiments over Wikidata and DBpedia show that our approach achieves comparable performance to other approaches in single-fact questions while being domain and KG independent. Results raise important questions for future work about how the textual content that can be created from knowledge graphs enables answer extraction.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.