用机器学习估计有限时间序列数据的相关矩阵

Nikhil Easaw, Woo Soek, Prashant Singh Lohiya, S. Jalan, Priodyuti Pradhan
{"title":"用机器学习估计有限时间序列数据的相关矩阵","authors":"Nikhil Easaw, Woo Soek, Prashant Singh Lohiya, S. Jalan, Priodyuti Pradhan","doi":"10.48550/arXiv.2209.01198","DOIUrl":null,"url":null,"abstract":"Correlation matrices contain a wide variety of spatio-temporal information about a dynamical system. Predicting correlation matrices from partial time series information of a few nodes characterizes the spatio-temporal dynamics of the entire underlying system. This information can help to predict the underlying network structure, e.g., inferring neuronal connections from spiking data, deducing causal dependencies between genes from expression data, and discovering long spatial range influences in climate variations. Traditional methods of predicting correlation matrices utilize time series data of all the nodes of the underlying networks. Here, we use a supervised machine learning technique to predict the correlation matrix of entire systems from finite time series information of a few randomly selected nodes. The accuracy of the prediction validates that only a limited time series of a subset of the entire system is enough to make good correlation matrix predictions. Furthermore, using an unsupervised learning algorithm, we furnish insights into the success of the predictions from our model. Finally, we employ the machine learning model developed here to real-world data sets.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"41 1","pages":"102053"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Correlation Matrices from Limited time series Data using Machine Learning\",\"authors\":\"Nikhil Easaw, Woo Soek, Prashant Singh Lohiya, S. Jalan, Priodyuti Pradhan\",\"doi\":\"10.48550/arXiv.2209.01198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correlation matrices contain a wide variety of spatio-temporal information about a dynamical system. Predicting correlation matrices from partial time series information of a few nodes characterizes the spatio-temporal dynamics of the entire underlying system. This information can help to predict the underlying network structure, e.g., inferring neuronal connections from spiking data, deducing causal dependencies between genes from expression data, and discovering long spatial range influences in climate variations. Traditional methods of predicting correlation matrices utilize time series data of all the nodes of the underlying networks. Here, we use a supervised machine learning technique to predict the correlation matrix of entire systems from finite time series information of a few randomly selected nodes. The accuracy of the prediction validates that only a limited time series of a subset of the entire system is enough to make good correlation matrix predictions. Furthermore, using an unsupervised learning algorithm, we furnish insights into the success of the predictions from our model. Finally, we employ the machine learning model developed here to real-world data sets.\",\"PeriodicalId\":14601,\"journal\":{\"name\":\"J. Comput. Sci.\",\"volume\":\"41 1\",\"pages\":\"102053\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.01198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

相关矩阵包含了动态系统的各种时空信息。从几个节点的部分时间序列信息预测相关矩阵表征了整个底层系统的时空动态。这些信息有助于预测潜在的网络结构,例如,从峰值数据推断神经元连接,从表达数据推断基因之间的因果关系,以及发现气候变化的长空间范围影响。传统的预测相关矩阵的方法是利用底层网络所有节点的时间序列数据。在这里,我们使用有监督的机器学习技术从一些随机选择的节点的有限时间序列信息中预测整个系统的相关矩阵。预测的准确性验证了整个系统的一个子集的有限时间序列足以做出良好的相关矩阵预测。此外,使用无监督学习算法,我们提供了从我们的模型预测成功的见解。最后,我们将这里开发的机器学习模型应用于现实世界的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Correlation Matrices from Limited time series Data using Machine Learning
Correlation matrices contain a wide variety of spatio-temporal information about a dynamical system. Predicting correlation matrices from partial time series information of a few nodes characterizes the spatio-temporal dynamics of the entire underlying system. This information can help to predict the underlying network structure, e.g., inferring neuronal connections from spiking data, deducing causal dependencies between genes from expression data, and discovering long spatial range influences in climate variations. Traditional methods of predicting correlation matrices utilize time series data of all the nodes of the underlying networks. Here, we use a supervised machine learning technique to predict the correlation matrix of entire systems from finite time series information of a few randomly selected nodes. The accuracy of the prediction validates that only a limited time series of a subset of the entire system is enough to make good correlation matrix predictions. Furthermore, using an unsupervised learning algorithm, we furnish insights into the success of the predictions from our model. Finally, we employ the machine learning model developed here to real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new collective anomaly detection approach using pitch frequency and dissimilarity: Pitchy anomaly detection (PAD) Distributed source scheme for Poisson equation using finite element method Neural network control design for solid composite materials Inductive and transductive link prediction for criminal network analysis Democracy by Design: Perspectives for Digitally Assisted, Participatory Upgrades of Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1