首页 > 最新文献

J. Comput. Sci.最新文献

英文 中文
A new collective anomaly detection approach using pitch frequency and dissimilarity: Pitchy anomaly detection (PAD) 一种基于基音频率和不相似度的集体异常检测方法:基音异常检测(PAD)
Pub Date : 2023-09-01 DOI: 10.2139/ssrn.4349068
E. C. Erkus, Vilda Purutçuoglu Gazi
{"title":"A new collective anomaly detection approach using pitch frequency and dissimilarity: Pitchy anomaly detection (PAD)","authors":"E. C. Erkus, Vilda Purutçuoglu Gazi","doi":"10.2139/ssrn.4349068","DOIUrl":"https://doi.org/10.2139/ssrn.4349068","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"4 1","pages":"102084"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77572349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Distributed source scheme for Poisson equation using finite element method 用有限元法求解泊松方程的分布式源格式
Pub Date : 2023-07-01 DOI: 10.2139/ssrn.4397801
N. Goona, S. Parne
{"title":"Distributed source scheme for Poisson equation using finite element method","authors":"N. Goona, S. Parne","doi":"10.2139/ssrn.4397801","DOIUrl":"https://doi.org/10.2139/ssrn.4397801","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"13 1","pages":"102103"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86029853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network control design for solid composite materials 固体复合材料的神经网络控制设计
Pub Date : 2023-06-01 DOI: 10.2139/ssrn.4361699
S. Ossandón, Mauricio Barrientos
{"title":"Neural network control design for solid composite materials","authors":"S. Ossandón, Mauricio Barrientos","doi":"10.2139/ssrn.4361699","DOIUrl":"https://doi.org/10.2139/ssrn.4361699","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"29 1","pages":"102081"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87412065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inductive and transductive link prediction for criminal network analysis 犯罪网络分析的感应和传导环节预测
Pub Date : 2023-06-01 DOI: 10.2139/ssrn.4331130
Zahra Ahmadi, Hoang H. Nguyen, Zijian Zhang, Dmytro Bozhkov, D. Kudenko, Maria Jofre, F. Calderoni, Noa Cohen, Yosef Solewicz
{"title":"Inductive and transductive link prediction for criminal network analysis","authors":"Zahra Ahmadi, Hoang H. Nguyen, Zijian Zhang, Dmytro Bozhkov, D. Kudenko, Maria Jofre, F. Calderoni, Noa Cohen, Yosef Solewicz","doi":"10.2139/ssrn.4331130","DOIUrl":"https://doi.org/10.2139/ssrn.4331130","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"21 1","pages":"102063"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91088055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Democracy by Design: Perspectives for Digitally Assisted, Participatory Upgrades of Society 设计中的民主:数字辅助、参与式社会升级的视角
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4266038
D. Helbing, Sachit Mahajan, Regula Hänggli Fricker, Andrea Musso, C. Hausladen, C. Carissimo, Dino Carpentras, Elisabeth Stockinger, Javier Argota Sánchez-Vaquerizo, Joshua Yang, M. Ballandies, Marcin Korecki, R. Dubey, Evangelos Pournaras
{"title":"Democracy by Design: Perspectives for Digitally Assisted, Participatory Upgrades of Society","authors":"D. Helbing, Sachit Mahajan, Regula Hänggli Fricker, Andrea Musso, C. Hausladen, C. Carissimo, Dino Carpentras, Elisabeth Stockinger, Javier Argota Sánchez-Vaquerizo, Joshua Yang, M. Ballandies, Marcin Korecki, R. Dubey, Evangelos Pournaras","doi":"10.2139/ssrn.4266038","DOIUrl":"https://doi.org/10.2139/ssrn.4266038","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"33 1","pages":"102061"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81333803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
SRL-Assisted AFM: Generating Planar Unstructured Quadrilateral Meshes with Supervised and Reinforcement Learning-Assisted Advancing Front Method srl辅助AFM:基于监督和强化学习辅助推进前沿法生成平面非结构化四边形网格
Pub Date : 2023-04-30 DOI: 10.48550/arXiv.2305.00540
Huai-Shui Tong, Kuanren Qian, Eni Halilaj, Y. Zhang
High-quality mesh generation is the foundation of accurate finite element analysis. Due to the vast interior vertices search space and complex initial boundaries, mesh generation for complicated domains requires substantial manual processing and has long been considered the most challenging and time-consuming bottleneck of the entire modeling and analysis process. In this paper, we present a novel computational framework named ``SRL-assisted AFM"for meshing planar geometries by combining the advancing front method with neural networks that select reference vertices and update the front boundary using ``policy networks."These deep neural networks are trained using a unique pipeline that combines supervised learning with reinforcement learning to iteratively improve mesh quality. First, we generate different initial boundaries by randomly sampling points in a square domain and connecting them sequentially. These boundaries are used for obtaining input meshes and extracting training datasets in the supervised learning module. We then iteratively improve the reinforcement learning model performance with reward functions designed for special requirements, such as improving the mesh quality and controlling the number and distribution of extraordinary points. Our proposed supervised learning neural networks achieve an accuracy higher than 98% on predicting commercial software. The final reinforcement learning neural networks automatically generate high-quality quadrilateral meshes for complex planar domains with sharp features and boundary layers.
高质量的网格生成是精确有限元分析的基础。由于内部顶点搜索空间巨大,初始边界复杂,复杂域的网格生成需要大量的人工处理,一直被认为是整个建模和分析过程中最具挑战性和最耗时的瓶颈。在本文中,我们提出了一种名为“srl辅助AFM”的新型计算框架,该框架将推进前沿方法与神经网络相结合,使用“策略网络”选择参考顶点并更新前沿边界。这些深度神经网络使用独特的管道进行训练,该管道将监督学习与强化学习相结合,以迭代地提高网格质量。首先,我们通过在正方形域中随机采样点并将其顺序连接来生成不同的初始边界。这些边界用于在监督学习模块中获取输入网格和提取训练数据集。然后,我们使用针对特殊要求设计的奖励函数迭代改进强化学习模型的性能,例如提高网格质量和控制异常点的数量和分布。我们提出的监督学习神经网络在预测商业软件上的准确率高于98%。最后的强化学习神经网络自动生成具有尖锐特征和边界层的复杂平面域的高质量四边形网格。
{"title":"SRL-Assisted AFM: Generating Planar Unstructured Quadrilateral Meshes with Supervised and Reinforcement Learning-Assisted Advancing Front Method","authors":"Huai-Shui Tong, Kuanren Qian, Eni Halilaj, Y. Zhang","doi":"10.48550/arXiv.2305.00540","DOIUrl":"https://doi.org/10.48550/arXiv.2305.00540","url":null,"abstract":"High-quality mesh generation is the foundation of accurate finite element analysis. Due to the vast interior vertices search space and complex initial boundaries, mesh generation for complicated domains requires substantial manual processing and has long been considered the most challenging and time-consuming bottleneck of the entire modeling and analysis process. In this paper, we present a novel computational framework named ``SRL-assisted AFM\"for meshing planar geometries by combining the advancing front method with neural networks that select reference vertices and update the front boundary using ``policy networks.\"These deep neural networks are trained using a unique pipeline that combines supervised learning with reinforcement learning to iteratively improve mesh quality. First, we generate different initial boundaries by randomly sampling points in a square domain and connecting them sequentially. These boundaries are used for obtaining input meshes and extracting training datasets in the supervised learning module. We then iteratively improve the reinforcement learning model performance with reward functions designed for special requirements, such as improving the mesh quality and controlling the number and distribution of extraordinary points. Our proposed supervised learning neural networks achieve an accuracy higher than 98% on predicting commercial software. The final reinforcement learning neural networks automatically generate high-quality quadrilateral meshes for complex planar domains with sharp features and boundary layers.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"142 1","pages":"102109"},"PeriodicalIF":0.0,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74327447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel global clustering coefficient-dependent degree centrality (GCCDC) metric for large network analysis using real-world datasets 一种新的全局聚类系数相关度中心性(GCCDC)度量,用于使用真实世界数据集的大型网络分析
Pub Date : 2023-04-01 DOI: 10.2139/ssrn.4284451
Ubaida Fatima, Saman Hina, Muhammad Wasif
{"title":"A novel global clustering coefficient-dependent degree centrality (GCCDC) metric for large network analysis using real-world datasets","authors":"Ubaida Fatima, Saman Hina, Muhammad Wasif","doi":"10.2139/ssrn.4284451","DOIUrl":"https://doi.org/10.2139/ssrn.4284451","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"36 1","pages":"102008"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88555196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical solution of extended black-oil model incorporating capillary effects based on a high-resolution central scheme 基于高分辨率中心格式的考虑毛细效应的扩展黑油模型的数值解
Pub Date : 2023-03-01 DOI: 10.2139/ssrn.4281400
H. Biglarian, M. Salimi
{"title":"Numerical solution of extended black-oil model incorporating capillary effects based on a high-resolution central scheme","authors":"H. Biglarian, M. Salimi","doi":"10.2139/ssrn.4281400","DOIUrl":"https://doi.org/10.2139/ssrn.4281400","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"75 1","pages":"102003"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86043831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Hunting Leadership optimization: Algorithm and applications 动态狩猎领导力优化:算法与应用
Pub Date : 2023-03-01 DOI: 10.2139/ssrn.4288827
B. Ahmadi, Juan S. Giraldo, Gerwin Hoogsteen
{"title":"Dynamic Hunting Leadership optimization: Algorithm and applications","authors":"B. Ahmadi, Juan S. Giraldo, Gerwin Hoogsteen","doi":"10.2139/ssrn.4288827","DOIUrl":"https://doi.org/10.2139/ssrn.4288827","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"5 1","pages":"102010"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87614971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Customizable Adaptive Regularization Techniques for B-Spline Modeling b样条建模的可定制自适应正则化技术
Pub Date : 2023-01-03 DOI: 10.48550/arXiv.2301.01209
David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka
B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The proposed method selectively incorporates regularization terms based on first and second derivatives to maintain model accuracy while minimizing numerical artifacts. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations. In addition, a key tuning parameter is highlighted and the effects of this parameter are presented in detail. This paper is an extension of our previous conference paper at the 2022 International Conference on Computational Science (ICCS) [Lenz et al. 2022].
b样条模型是用函数近似表示科学数据集的一种强大方法。然而,当拟合数据不均匀分布时,这些模型可能会出现伪振荡。模型正则化(即平滑)传统上被用来最小化这些振荡;不幸的是,如果不平滑数据集的关键特征,有时不可能充分去除不需要的工件。在本文中,我们提出了一种模型正则化方法,该方法保留了数据集的重要特征,同时最小化了人为振荡。我们的方法在整个域内自动改变平滑参数的强度,去除约束较差区域的伪影,同时保持其他区域不变。提出的方法选择性地结合基于一阶导数和二阶导数的正则化项,在保持模型精度的同时最小化数值伪影。我们的方法的行为在科学模拟产生的二维和三维数据集的集合上得到了验证。此外,重点介绍了一个关键的调优参数,并详细介绍了该参数的效果。本文是我们之前在2022年国际计算科学会议(ICCS)上发表的会议论文的延伸[Lenz et al. 2022]。
{"title":"Customizable Adaptive Regularization Techniques for B-Spline Modeling","authors":"David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka","doi":"10.48550/arXiv.2301.01209","DOIUrl":"https://doi.org/10.48550/arXiv.2301.01209","url":null,"abstract":"B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The proposed method selectively incorporates regularization terms based on first and second derivatives to maintain model accuracy while minimizing numerical artifacts. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations. In addition, a key tuning parameter is highlighted and the effects of this parameter are presented in detail. This paper is an extension of our previous conference paper at the 2022 International Conference on Computational Science (ICCS) [Lenz et al. 2022].","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"25 3 1","pages":"102037"},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79741039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
J. Comput. Sci.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1