基于多层感知器的CNTFET与量子线FET优化设计性能的比较分析

Arpan Deyasi , Arup Kumar Bhattacharjee , Soumen Mukherjee , Angsuman Sarkar
{"title":"基于多层感知器的CNTFET与量子线FET优化设计性能的比较分析","authors":"Arpan Deyasi ,&nbsp;Arup Kumar Bhattacharjee ,&nbsp;Soumen Mukherjee ,&nbsp;Angsuman Sarkar","doi":"10.1016/j.ssel.2021.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>A novel classification technique is applied for identifying carbon nanotube FET and quantum wire FET based on their electrical characteristics and percentage error is estimated using multi-layer perceptron analysis to justify the accuracy of computation. Two different cross-validation methods, namely decision table and multilayer perceptron (MLP) are applied on same data set of both the devices, and results speak about higher accuracy when MLP is performed. Also, for different testing-training set of data, MLP performs far better than conventional decision table approach; when correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error are computed. For comparative study, similar geometrical configuration, and equivalent biasing arrangement of both the devices are assumed, and identical number of iterations is performed for equal subsets. Results speak supremacy of MLP technique applied for classification and identification of nanometric devices based on their electronic attributes.</p></div>","PeriodicalId":101175,"journal":{"name":"Solid State Electronics Letters","volume":"3 ","pages":"Pages 42-52"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589208821000119/pdfft?md5=476b086fead1dae48bef896ab9c1e6a0&pid=1-s2.0-S2589208821000119-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Multi-layer Perceptron based Comparative Analysis between CNTFET and Quantum Wire FET for Optimum Design Performance\",\"authors\":\"Arpan Deyasi ,&nbsp;Arup Kumar Bhattacharjee ,&nbsp;Soumen Mukherjee ,&nbsp;Angsuman Sarkar\",\"doi\":\"10.1016/j.ssel.2021.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel classification technique is applied for identifying carbon nanotube FET and quantum wire FET based on their electrical characteristics and percentage error is estimated using multi-layer perceptron analysis to justify the accuracy of computation. Two different cross-validation methods, namely decision table and multilayer perceptron (MLP) are applied on same data set of both the devices, and results speak about higher accuracy when MLP is performed. Also, for different testing-training set of data, MLP performs far better than conventional decision table approach; when correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error are computed. For comparative study, similar geometrical configuration, and equivalent biasing arrangement of both the devices are assumed, and identical number of iterations is performed for equal subsets. Results speak supremacy of MLP technique applied for classification and identification of nanometric devices based on their electronic attributes.</p></div>\",\"PeriodicalId\":101175,\"journal\":{\"name\":\"Solid State Electronics Letters\",\"volume\":\"3 \",\"pages\":\"Pages 42-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589208821000119/pdfft?md5=476b086fead1dae48bef896ab9c1e6a0&pid=1-s2.0-S2589208821000119-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Electronics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589208821000119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589208821000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于碳纳米管场效应管和量子线场效应管的电特性,提出了一种新的分类技术,并利用多层感知器分析估计了计算的百分比误差,以证明计算的准确性。将决策表和多层感知器(MLP)两种不同的交叉验证方法应用于两种设备的同一数据集,结果表明,在执行MLP时,准确率更高。此外,对于不同的测试训练数据集,MLP的性能远优于传统的决策表方法;计算相关系数、平均绝对误差、均方根误差、相对绝对误差和根相对平方误差。为了进行比较研究,假设两种器件的几何结构相似,偏置布置等效,对相同的子集进行相同的迭代次数。结果表明,基于纳米器件的电子属性,MLP技术应用于纳米器件的分类和鉴定具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-layer Perceptron based Comparative Analysis between CNTFET and Quantum Wire FET for Optimum Design Performance

A novel classification technique is applied for identifying carbon nanotube FET and quantum wire FET based on their electrical characteristics and percentage error is estimated using multi-layer perceptron analysis to justify the accuracy of computation. Two different cross-validation methods, namely decision table and multilayer perceptron (MLP) are applied on same data set of both the devices, and results speak about higher accuracy when MLP is performed. Also, for different testing-training set of data, MLP performs far better than conventional decision table approach; when correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error are computed. For comparative study, similar geometrical configuration, and equivalent biasing arrangement of both the devices are assumed, and identical number of iterations is performed for equal subsets. Results speak supremacy of MLP technique applied for classification and identification of nanometric devices based on their electronic attributes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Convex Corner Compensation Pattern in Manufacturing of Si Diaphragms A 1.3-mW 73.3-dB DR 10-MHz Bandwidth CT Delta-Sigma Modulator with a Charge-Recycled SC DAC and 52.7-dB Alias Rejection A capacitor-free fast-response low-dropout voltage regulator Empirical Study of the Cut-Off Frequency of Multi-Finger Nanometer MOS Transistor A 1.3-mW 73.3-dB DR 10-MHz Bandwidth CT Delta-Sigma Modulator with a Charge-Recycled SC DAC and 52.7-dB Alias Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1