集成自适应参数配置的改进蚁群算法在机器人移动路径设计中的应用

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140844
Jin-Il Han
{"title":"集成自适应参数配置的改进蚁群算法在机器人移动路径设计中的应用","authors":"Jin-Il Han","doi":"10.14569/ijacsa.2023.0140844","DOIUrl":null,"url":null,"abstract":"—Under the background of the continuous progress of Industry 4.0 reform, the market demand for mobile robots in major world economies is gradually increasing. In order to improve the mobile robot's movement path planning quality and obstacle avoidance ability, this research adjusted the node selection method, pheromone update mechanism, transition probability and volatility coefficient calculation method of the ant colony algorithm, and improved the search direction setting and cost estimation calculation method of the A* algorithm. Thus, a robot movement path planning model can be designed with respect to the improved ant colony algorithm and A* algorithm. The simulation experiment results on grid maps show that the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the Tianniu whisker search algorithm, and the particle swarm algorithm designed in this study converged after 8, 37, 23, and 26 iterations, respectively. The minimum path lengths after convergence were 13.24m, 17.82m, 16.24m, and 17.05m, respectively. When the edge length of the grid map is 100m, the minimum planning length and total moving time of the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the longicorn whisker search algorithm, and the particle swarm algorithm designed in this study are 49m, 104m, 75m, 93m and 49s, 142s, 93s, and 127s, respectively. This indicates that the model designed in this study can effectively shorten the mobile path and training time while completing mobile tasks. The results of this study have a certain reference value for optimizing the robot's movement mode and obstacle avoidance ability.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"110 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Improved Ant Colony Algorithm Integrating Adaptive Parameter Configuration in Robot Mobile Path Design\",\"authors\":\"Jin-Il Han\",\"doi\":\"10.14569/ijacsa.2023.0140844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Under the background of the continuous progress of Industry 4.0 reform, the market demand for mobile robots in major world economies is gradually increasing. In order to improve the mobile robot's movement path planning quality and obstacle avoidance ability, this research adjusted the node selection method, pheromone update mechanism, transition probability and volatility coefficient calculation method of the ant colony algorithm, and improved the search direction setting and cost estimation calculation method of the A* algorithm. Thus, a robot movement path planning model can be designed with respect to the improved ant colony algorithm and A* algorithm. The simulation experiment results on grid maps show that the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the Tianniu whisker search algorithm, and the particle swarm algorithm designed in this study converged after 8, 37, 23, and 26 iterations, respectively. The minimum path lengths after convergence were 13.24m, 17.82m, 16.24m, and 17.05m, respectively. When the edge length of the grid map is 100m, the minimum planning length and total moving time of the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the longicorn whisker search algorithm, and the particle swarm algorithm designed in this study are 49m, 104m, 75m, 93m and 49s, 142s, 93s, and 127s, respectively. This indicates that the model designed in this study can effectively shorten the mobile path and training time while completing mobile tasks. The results of this study have a certain reference value for optimizing the robot's movement mode and obstacle avoidance ability.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

-在工业4.0改革不断推进的背景下,世界主要经济体对移动机器人的市场需求逐渐增加。为了提高移动机器人的运动路径规划质量和避障能力,本研究对蚁群算法的节点选择方法、信息素更新机制、转移概率和波动系数计算方法进行了调整,对A*算法的搜索方向设置和代价估计计算方法进行了改进。因此,可以根据改进的蚁群算法和a *算法设计机器人运动路径规划模型。网格地图上的仿真实验结果表明,本文设计的改进算法、传统蚁群算法、天牛须搜索算法和粒子群算法构建的规划模型分别经过8次、37次、23次和26次迭代后收敛。收敛后的最小路径长度分别为13.24m、17.82m、16.24m和17.05m。当网格图边缘长度为100m时,本文设计的改进算法、传统蚁群算法、天角须搜索算法和粒子群算法构建的规划模型的最小规划长度和总移动时间分别为49m、104m、75m、93m和49s、142s、93s、127s。这表明本研究设计的模型在完成移动任务的同时,可以有效缩短移动路径和训练时间。研究结果对优化机器人的运动方式和避障能力具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Improved Ant Colony Algorithm Integrating Adaptive Parameter Configuration in Robot Mobile Path Design
—Under the background of the continuous progress of Industry 4.0 reform, the market demand for mobile robots in major world economies is gradually increasing. In order to improve the mobile robot's movement path planning quality and obstacle avoidance ability, this research adjusted the node selection method, pheromone update mechanism, transition probability and volatility coefficient calculation method of the ant colony algorithm, and improved the search direction setting and cost estimation calculation method of the A* algorithm. Thus, a robot movement path planning model can be designed with respect to the improved ant colony algorithm and A* algorithm. The simulation experiment results on grid maps show that the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the Tianniu whisker search algorithm, and the particle swarm algorithm designed in this study converged after 8, 37, 23, and 26 iterations, respectively. The minimum path lengths after convergence were 13.24m, 17.82m, 16.24m, and 17.05m, respectively. When the edge length of the grid map is 100m, the minimum planning length and total moving time of the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the longicorn whisker search algorithm, and the particle swarm algorithm designed in this study are 49m, 104m, 75m, 93m and 49s, 142s, 93s, and 127s, respectively. This indicates that the model designed in this study can effectively shorten the mobile path and training time while completing mobile tasks. The results of this study have a certain reference value for optimizing the robot's movement mode and obstacle avoidance ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1