1,2-二氯苯在有机和无机气溶胶上的分配

IF 2 4区 环境科学与生态学 Q3 CHEMISTRY, ANALYTICAL Environmental Chemistry Pub Date : 2021-05-04 DOI:10.1071/EN21016
Jeonghyeon Ahn, G. Rao, Eric P. Vejerano
{"title":"1,2-二氯苯在有机和无机气溶胶上的分配","authors":"Jeonghyeon Ahn, G. Rao, Eric P. Vejerano","doi":"10.1071/EN21016","DOIUrl":null,"url":null,"abstract":"Environmental context Contaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. Abstract Volatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95 %. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50 % have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"79 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Partitioning of 1,2-dichlorobenzene onto organic and inorganic aerosols\",\"authors\":\"Jeonghyeon Ahn, G. Rao, Eric P. Vejerano\",\"doi\":\"10.1071/EN21016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental context Contaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. Abstract Volatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95 %. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50 % have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/EN21016\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/EN21016","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2

摘要

与气溶胶中的蒸汽相比,气溶胶中的污染物被有效地运输和沉积到呼吸系统。测量气溶胶中含有的极低浓度的高挥发性污染物是一项挑战;因此,评估它们对环境和人类健康的不利影响尚不为人所知。这些污染物的测量浓度与从各种环境气溶胶中取样的挥发性较低的化学物质相似,这表明它们的贡献不容忽视。摘要挥发性有机化合物(VOCs)由于其高蒸气压,预计不会在气溶胶上分裂。由于很难区分气溶胶中挥发性有机化合物相对于气相中挥发性有机化合物的质量分数较低,因此对气体-气溶胶中挥发性有机化合物分配的研究受到限制。在这里,我们开发了一个实验系统来研究替代挥发性有机化合物1,2-二氯苯(1,2- dcb)在不同相对湿度(RHs)和温度下对无机和有机气溶胶的分配。1,2- dcb在琥珀酸(SA)气溶胶中的分配系数(Kip)比在硫酸铵(Am Sulf)气溶胶中的分配系数(Kip)高约10倍。在RH水平为5 - 95%时,SA气溶胶的Kip值为0.23-3.27 pg 1,2- dcbµg−1,Am硫气溶胶的Kip值为0.02-3.82 pg 1,2- dcbµg−1。1,2- dcb在硫硫气溶胶上的吸附遵循Kip和RH之间的经典关系,而在SA上的吸附则不是。对于硫Am气溶胶,超过50%的RH水平对分配的影响可以忽略不计,其中极少量的1,2- dcb通过溶解分配到气溶胶中。辛醇-空气分配(KOA)模型对SA气溶胶1,2- dcb的Kip的预测优于饱和蒸汽压分配(Pi0)模型,而考虑吸收分配时,Pi0模型对Kip的预测优于KOA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partitioning of 1,2-dichlorobenzene onto organic and inorganic aerosols
Environmental context Contaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. Abstract Volatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95 %. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50 % have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry
Environmental Chemistry 环境科学-分析化学
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged. While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding. Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited. Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
Molecular composition and the impact of fuel moisture content on fresh primary organic aerosol emissions during laboratory combustion of Ponderosa pine needles. A review of inorganic contaminants in Australian marine mammals, birds and turtles Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Dedication to Professor Kevin Francesconi, father of organoarsenicals in the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1