{"title":"1,2-二氯苯在有机和无机气溶胶上的分配","authors":"Jeonghyeon Ahn, G. Rao, Eric P. Vejerano","doi":"10.1071/EN21016","DOIUrl":null,"url":null,"abstract":"Environmental context Contaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. Abstract Volatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95 %. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50 % have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"79 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Partitioning of 1,2-dichlorobenzene onto organic and inorganic aerosols\",\"authors\":\"Jeonghyeon Ahn, G. Rao, Eric P. Vejerano\",\"doi\":\"10.1071/EN21016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental context Contaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. Abstract Volatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95 %. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50 % have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/EN21016\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/EN21016","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Partitioning of 1,2-dichlorobenzene onto organic and inorganic aerosols
Environmental context Contaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. Abstract Volatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95 %. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50 % have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.
期刊介绍:
Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged.
While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding.
Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited.
Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.