离散再现核希尔伯特空间:狄拉克质量的抽样和分布

P. Jorgensen, Feng Tian
{"title":"离散再现核希尔伯特空间:狄拉克质量的抽样和分布","authors":"P. Jorgensen, Feng Tian","doi":"10.5555/2789272.2912098","DOIUrl":null,"url":null,"abstract":"We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"31 1","pages":"3079-3114"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses\",\"authors\":\"P. Jorgensen, Feng Tian\",\"doi\":\"10.5555/2789272.2912098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\\\\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\\\\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\\\\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"31 1\",\"pages\":\"3079-3114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2789272.2912098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2912098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们研究了核的再现,以及相关的核希尔伯特空间(RKHSs) $\mathscr{H}$在无限,离散和可数集合$V$上的再现。在这种情况下,我们详细地分析了V的相应狄拉克点质量的分布。示例包括来自神经网络的某些模型:极限学习机(ELM)是一种神经网络配置,其中随机采样隐藏的权重层,然后计算结果输出。对于定义在给定的可数无限离散集$V$上的函数的RKHSs $\mathscr{H}$,我们刻画了$V$中所有点$x$包含狄拉克质量$\delta_{x}$的函数。这个问题发挥重要作用的其他例子和应用有:(i)离散布朗运动-希尔伯特空间,即Cameron-Martin Hilbert空间的离散版本;(ii)对应于图-拉普拉斯算子的能量-希尔伯特空间,其中顶点集$V$配备一个阻力度量;最后(iii)高斯自由场的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses
We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1