{"title":"离散再现核希尔伯特空间:狄拉克质量的抽样和分布","authors":"P. Jorgensen, Feng Tian","doi":"10.5555/2789272.2912098","DOIUrl":null,"url":null,"abstract":"We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"31 1","pages":"3079-3114"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses\",\"authors\":\"P. Jorgensen, Feng Tian\",\"doi\":\"10.5555/2789272.2912098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\\\\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\\\\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\\\\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"31 1\",\"pages\":\"3079-3114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2789272.2912098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2912098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses
We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.