贵阳含硒土壤富硒作物硒的形态与特征

IF 2 4区 环境科学与生态学 Q3 CHEMISTRY, ANALYTICAL Environmental Chemistry Pub Date : 2023-06-20 DOI:10.1071/en22084
Z. Pan, Ju Chen, Minzi Wang, Yanfei Feng, W. Meng
{"title":"贵阳含硒土壤富硒作物硒的形态与特征","authors":"Z. Pan, Ju Chen, Minzi Wang, Yanfei Feng, W. Meng","doi":"10.1071/en22084","DOIUrl":null,"url":null,"abstract":"Environmental context Elemental selenium plays an important role in maintaining human health and the growth of plants and animals. We studied the availability of selenium in soils and agricultural crops in Guiyang City, China, and found that the soil is selenium-rich and the crops are selenium-enriched. These results can help to understand and improve the development of mountain agriculture and rural revitalisation. Rationale Selenium (Se) is a critical element for both maintaining human health and the growth of plants and animals. The content of Se in crops is primarily determined by its speciation in soil. Therefore, the investigation of soil Se and its speciation has become a key focus of current research. Methodology In this study, taking a typical seleniferous area in Guiyang City as the study area, we investigated selenium speciation in Se-rich soil and its distribution characteristics in both soil and crops using atomic fluorescence spectroscopy (AFS) and a five-step extraction processing methods. Moreover, we further explored the key factors that affect the distribution of Se in soil. Results The findings are summarised as follows: (1) the Se content in all investigated samples met the standards of selenium-rich soil (0.40 mg/kg). The Se content in the soil surrounding crop roots ranged from 0.96 to 4.29 mg/kg, with an average value of 2.18 mg/kg. (2) Soil Se primarily existed in organic, residual, and iron and manganese oxide-binding species. The organic, sulfide-binding, and elemental Se species were the major contributors, accounting for an average of 47.00%, while the content of water-soluble, exchangeable, and carbonate-binding Se species was significantly lower. (3) Almost all crops, regardless of their types, were found Se-enriched, accounting for approximately 89.47% of the total crops in the study area. The average Se content was 0.35, 0.12, and 0.026 mg/kg in tea, rice, and corn, respectively. Discussion Varying soil physical–chemical properties, such as the content of soil organic matter content and pH levels, etc. can impact the distribution of Se in soil differently. These findings can serve as a scientific foundation for the effective utilisation of selenium-rich land resources in Guiyang city. They can also support and facilitate the development of modern specialty and high-efficiency mountain agriculture, ultimately contributing to rural revitalisation and the national implementation of the Big Ecology Strategy.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium speciation and characteristics of selenium-enriched crops in Guiyang seleniferous soil, southwestern China\",\"authors\":\"Z. Pan, Ju Chen, Minzi Wang, Yanfei Feng, W. Meng\",\"doi\":\"10.1071/en22084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental context Elemental selenium plays an important role in maintaining human health and the growth of plants and animals. We studied the availability of selenium in soils and agricultural crops in Guiyang City, China, and found that the soil is selenium-rich and the crops are selenium-enriched. These results can help to understand and improve the development of mountain agriculture and rural revitalisation. Rationale Selenium (Se) is a critical element for both maintaining human health and the growth of plants and animals. The content of Se in crops is primarily determined by its speciation in soil. Therefore, the investigation of soil Se and its speciation has become a key focus of current research. Methodology In this study, taking a typical seleniferous area in Guiyang City as the study area, we investigated selenium speciation in Se-rich soil and its distribution characteristics in both soil and crops using atomic fluorescence spectroscopy (AFS) and a five-step extraction processing methods. Moreover, we further explored the key factors that affect the distribution of Se in soil. Results The findings are summarised as follows: (1) the Se content in all investigated samples met the standards of selenium-rich soil (0.40 mg/kg). The Se content in the soil surrounding crop roots ranged from 0.96 to 4.29 mg/kg, with an average value of 2.18 mg/kg. (2) Soil Se primarily existed in organic, residual, and iron and manganese oxide-binding species. The organic, sulfide-binding, and elemental Se species were the major contributors, accounting for an average of 47.00%, while the content of water-soluble, exchangeable, and carbonate-binding Se species was significantly lower. (3) Almost all crops, regardless of their types, were found Se-enriched, accounting for approximately 89.47% of the total crops in the study area. The average Se content was 0.35, 0.12, and 0.026 mg/kg in tea, rice, and corn, respectively. Discussion Varying soil physical–chemical properties, such as the content of soil organic matter content and pH levels, etc. can impact the distribution of Se in soil differently. These findings can serve as a scientific foundation for the effective utilisation of selenium-rich land resources in Guiyang city. They can also support and facilitate the development of modern specialty and high-efficiency mountain agriculture, ultimately contributing to rural revitalisation and the national implementation of the Big Ecology Strategy.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/en22084\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/en22084","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

元素硒在维持人体健康和动植物生长中起着重要作用。对贵阳市土壤和农作物中硒的有效性进行了研究,发现土壤富硒,作物富硒。这些结果有助于理解和改进山地农业的发展和乡村振兴。基本原理硒(Se)是维持人体健康和动植物生长的关键元素。作物中硒的含量主要是由土壤中硒的形态决定的。因此,土壤硒及其形态的调查已成为当前研究的重点。本研究以贵阳市典型富硒区为研究区,采用原子荧光光谱法(AFS)和五步提取法研究富硒土壤中硒的形态及其在土壤和作物中的分布特征。此外,我们还进一步探讨了影响土壤中硒分布的关键因素。结果:(1)所有样品的硒含量均达到富硒土壤标准(0.40 mg/kg)。作物根系周围土壤硒含量为0.96 ~ 4.29 mg/kg,平均值为2.18 mg/kg。(2)土壤硒主要存在于有机态、残态和铁锰氧化物结合态。有机态、硫化物结合态和元素态硒含量最高,平均占47.00%,水溶性、交换性和碳酸盐结合态硒含量较低。(3)研究区几乎所有作物(不论其类型)均富硒,约占作物总量的89.47%。茶叶、水稻和玉米的硒平均含量分别为0.35、0.12和0.026 mg/kg。不同的土壤理化性质,如土壤有机质含量、pH值等,对土壤中硒的分布有不同的影响。研究结果可为贵阳市富硒土地资源的有效利用提供科学依据。支持和促进现代特色和高效山地农业的发展,最终为乡村振兴和国家实施大生态战略做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selenium speciation and characteristics of selenium-enriched crops in Guiyang seleniferous soil, southwestern China
Environmental context Elemental selenium plays an important role in maintaining human health and the growth of plants and animals. We studied the availability of selenium in soils and agricultural crops in Guiyang City, China, and found that the soil is selenium-rich and the crops are selenium-enriched. These results can help to understand and improve the development of mountain agriculture and rural revitalisation. Rationale Selenium (Se) is a critical element for both maintaining human health and the growth of plants and animals. The content of Se in crops is primarily determined by its speciation in soil. Therefore, the investigation of soil Se and its speciation has become a key focus of current research. Methodology In this study, taking a typical seleniferous area in Guiyang City as the study area, we investigated selenium speciation in Se-rich soil and its distribution characteristics in both soil and crops using atomic fluorescence spectroscopy (AFS) and a five-step extraction processing methods. Moreover, we further explored the key factors that affect the distribution of Se in soil. Results The findings are summarised as follows: (1) the Se content in all investigated samples met the standards of selenium-rich soil (0.40 mg/kg). The Se content in the soil surrounding crop roots ranged from 0.96 to 4.29 mg/kg, with an average value of 2.18 mg/kg. (2) Soil Se primarily existed in organic, residual, and iron and manganese oxide-binding species. The organic, sulfide-binding, and elemental Se species were the major contributors, accounting for an average of 47.00%, while the content of water-soluble, exchangeable, and carbonate-binding Se species was significantly lower. (3) Almost all crops, regardless of their types, were found Se-enriched, accounting for approximately 89.47% of the total crops in the study area. The average Se content was 0.35, 0.12, and 0.026 mg/kg in tea, rice, and corn, respectively. Discussion Varying soil physical–chemical properties, such as the content of soil organic matter content and pH levels, etc. can impact the distribution of Se in soil differently. These findings can serve as a scientific foundation for the effective utilisation of selenium-rich land resources in Guiyang city. They can also support and facilitate the development of modern specialty and high-efficiency mountain agriculture, ultimately contributing to rural revitalisation and the national implementation of the Big Ecology Strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry
Environmental Chemistry 环境科学-分析化学
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged. While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding. Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited. Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
A review of inorganic contaminants in Australian marine mammals, birds and turtles Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Dedication to Professor Kevin Francesconi, father of organoarsenicals in the environment Soil decontamination by natural minerals: a comparison study of chalcopyrite and pyrite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1