总统安全的新时代:总统和他的黑莓

G. Karmous-Edwards
{"title":"总统安全的新时代:总统和他的黑莓","authors":"G. Karmous-Edwards","doi":"10.1109/MCSE.2005.32","DOIUrl":null,"url":null,"abstract":"Today's e-science, with its extreme-scale scientific applications, marks a turning point for high-end requirements on the compute infrastructure and, in particular, on optical networking resources. Although ongoing research efforts are aimed at exploiting the vast bandwidth of fiber-optic networks to both interconnect resources and enable high-performance applications, challenges continue to arise in the area of the optical control plane. The ultimate goal in this area is to extend the concept of application-driven networking into the optical space, providing unique features that couldn't be achieved otherwise. Many researchers in the e-science community are adopting grid computing to meet their ever-increasing computational and bandwidth needs as well as help them with their globally distributed collaborative efforts. This recent awareness of the network as a prime resource has led to a sharper focus on interactions with the optical control plane, grid middleware, and other applications. This article attempts to explain the rationale for why high-end e-science applications consider optical network resources to be as essential and dynamic as CPU and storage resources in a grid infrastructure and why rethinking the role of the optical control plane is essential for next-generation optical networks.","PeriodicalId":100659,"journal":{"name":"IMPACT of Computing in Science and Engineering","volume":"29 1","pages":"67-70"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A New Era of Presidential Security: The President and His BlackBerry\",\"authors\":\"G. Karmous-Edwards\",\"doi\":\"10.1109/MCSE.2005.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's e-science, with its extreme-scale scientific applications, marks a turning point for high-end requirements on the compute infrastructure and, in particular, on optical networking resources. Although ongoing research efforts are aimed at exploiting the vast bandwidth of fiber-optic networks to both interconnect resources and enable high-performance applications, challenges continue to arise in the area of the optical control plane. The ultimate goal in this area is to extend the concept of application-driven networking into the optical space, providing unique features that couldn't be achieved otherwise. Many researchers in the e-science community are adopting grid computing to meet their ever-increasing computational and bandwidth needs as well as help them with their globally distributed collaborative efforts. This recent awareness of the network as a prime resource has led to a sharper focus on interactions with the optical control plane, grid middleware, and other applications. This article attempts to explain the rationale for why high-end e-science applications consider optical network resources to be as essential and dynamic as CPU and storage resources in a grid infrastructure and why rethinking the role of the optical control plane is essential for next-generation optical networks.\",\"PeriodicalId\":100659,\"journal\":{\"name\":\"IMPACT of Computing in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"67-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMPACT of Computing in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSE.2005.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMPACT of Computing in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSE.2005.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

美国人沉迷于他们的个人数字助理(pda),奥巴马总统也不例外。在初选和总统竞选期间,人们经常看到奥巴马使用他的黑莓手机。一旦他赢得选举,关于他是否被允许在上任后继续使用它的争论随之而来。最初,特勤局认定他的黑莓没有提供继续使用所需的安全保障。特别令人担忧的是,攻击者有可能进入政府工作。尽管奥巴马说服他的安全人员让他继续使用黑莓(或类似黑莓的手持设备),但目前尚不清楚该设备究竟是如何修改的,以确保额外的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Era of Presidential Security: The President and His BlackBerry
Today's e-science, with its extreme-scale scientific applications, marks a turning point for high-end requirements on the compute infrastructure and, in particular, on optical networking resources. Although ongoing research efforts are aimed at exploiting the vast bandwidth of fiber-optic networks to both interconnect resources and enable high-performance applications, challenges continue to arise in the area of the optical control plane. The ultimate goal in this area is to extend the concept of application-driven networking into the optical space, providing unique features that couldn't be achieved otherwise. Many researchers in the e-science community are adopting grid computing to meet their ever-increasing computational and bandwidth needs as well as help them with their globally distributed collaborative efforts. This recent awareness of the network as a prime resource has led to a sharper focus on interactions with the optical control plane, grid middleware, and other applications. This article attempts to explain the rationale for why high-end e-science applications consider optical network resources to be as essential and dynamic as CPU and storage resources in a grid infrastructure and why rethinking the role of the optical control plane is essential for next-generation optical networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Interaction between an Edge and an Embedded Parallel Crack in a Structural Component Notice of Retraction: Smart City Priority Correlation Using Differential Equation Automated Binocular Vision Measurement of Food Dimensions and Volume for Dietary Evaluation Intelligent Information Processing Software Engineering for Computational Science: Past, Present, Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1