对初级视觉皮层的微磁刺激会诱发次级视觉皮层的局灶性持续激活。

Seung Woo Lee, Shelley I Fried
{"title":"对初级视觉皮层的微磁刺激会诱发次级视觉皮层的局灶性持续激活。","authors":"Seung Woo Lee, Shelley I Fried","doi":"10.1098/rsta.2021.0019","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical visual prostheses that aim to restore sight to the blind require the ability to create neural activity in the visual cortex. Electric stimulation delivered via microelectrodes implanted in the primary visual cortex (V1) has been the most common approach, although conventional electrodes may not effectively confine activation to focal regions and thus the acuity they create may be limited. Magnetic stimulation from microcoils confines activation to single cortical columns of V1 and thus may prove to be more effective than conventional microelectrodes, but the ability of microcoils to drive synaptic connections has not been explored. Here, we show that magnetic stimulation of V1 using microcoils induces spatially confined activation in the secondary visual cortex (V2) in mouse brain slices. Single-loop microcoils were fabricated using platinum-iridium flat microwires, and their effectiveness was evaluated using calcium imaging and compared with that of monopolar and bipolar electrodes. Our results show that compared to the electrodes, the microcoils better confined activation to a small region in V1. In addition, they produced more precise and sustained activation in V2. The finding that microcoil-based stimulation propagates to higher visual centres raises the possibility that complex visual perception, e.g. that requiring sustained synaptic inputs, may be achievable. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.</p>","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-magnetic stimulation of primary visual cortex induces focal and sustained activation of secondary visual cortex.\",\"authors\":\"Seung Woo Lee, Shelley I Fried\",\"doi\":\"10.1098/rsta.2021.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cortical visual prostheses that aim to restore sight to the blind require the ability to create neural activity in the visual cortex. Electric stimulation delivered via microelectrodes implanted in the primary visual cortex (V1) has been the most common approach, although conventional electrodes may not effectively confine activation to focal regions and thus the acuity they create may be limited. Magnetic stimulation from microcoils confines activation to single cortical columns of V1 and thus may prove to be more effective than conventional microelectrodes, but the ability of microcoils to drive synaptic connections has not been explored. Here, we show that magnetic stimulation of V1 using microcoils induces spatially confined activation in the secondary visual cortex (V2) in mouse brain slices. Single-loop microcoils were fabricated using platinum-iridium flat microwires, and their effectiveness was evaluated using calcium imaging and compared with that of monopolar and bipolar electrodes. Our results show that compared to the electrodes, the microcoils better confined activation to a small region in V1. In addition, they produced more precise and sustained activation in V2. The finding that microcoil-based stimulation propagates to higher visual centres raises the possibility that complex visual perception, e.g. that requiring sustained synaptic inputs, may be achievable. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.</p>\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旨在让盲人恢复视力的皮层视觉义肢需要能够在视觉皮层中产生神经活动。通过植入初级视觉皮层(V1)的微电极进行电刺激是最常见的方法,但传统电极可能无法有效地将激活限制在病灶区域,因此产生的敏锐度可能有限。微线圈的磁刺激可将激活限制在 V1 的单个皮质列,因此可能比传统的微电极更有效,但微线圈驱动突触连接的能力尚未得到探索。在这里,我们展示了在小鼠大脑切片中使用微线圈对 V1 进行磁刺激可诱导二级视觉皮层(V2)的空间局限性激活。我们使用铂-铱扁平微线制作了单环微线圈,并使用钙成像评估了它们的效果,还将其与单极和双极电极进行了比较。我们的结果表明,与电极相比,微线圈能更好地将激活限制在 V1 的一个小区域内。此外,微线圈还能在 V2 中产生更精确、更持久的激活。基于微线圈的刺激可以传播到更高的视觉中心,这一发现为复杂的视觉感知(例如需要持续突触输入的视觉感知)的实现提供了可能性。本文是 "先进的神经技术:将创新转化为健康和福祉 "主题期刊的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro-magnetic stimulation of primary visual cortex induces focal and sustained activation of secondary visual cortex.

Cortical visual prostheses that aim to restore sight to the blind require the ability to create neural activity in the visual cortex. Electric stimulation delivered via microelectrodes implanted in the primary visual cortex (V1) has been the most common approach, although conventional electrodes may not effectively confine activation to focal regions and thus the acuity they create may be limited. Magnetic stimulation from microcoils confines activation to single cortical columns of V1 and thus may prove to be more effective than conventional microelectrodes, but the ability of microcoils to drive synaptic connections has not been explored. Here, we show that magnetic stimulation of V1 using microcoils induces spatially confined activation in the secondary visual cortex (V2) in mouse brain slices. Single-loop microcoils were fabricated using platinum-iridium flat microwires, and their effectiveness was evaluated using calcium imaging and compared with that of monopolar and bipolar electrodes. Our results show that compared to the electrodes, the microcoils better confined activation to a small region in V1. In addition, they produced more precise and sustained activation in V2. The finding that microcoil-based stimulation propagates to higher visual centres raises the possibility that complex visual perception, e.g. that requiring sustained synaptic inputs, may be achievable. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The contribution of a catchment-scale advice network to successful agricultural drought adaptation in Northern Thailand Using machine learning to identify novel hydroclimate states The economics of managing water crises Benchmark worst droughts during the summer monsoon in India Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical–statistical forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1