基于改进RLS方法的锂离子超级电容器参数辨识

Teng Long, Xiaoyu Li, Jindong Tian, Yong Tian, Lijuan Xiang
{"title":"基于改进RLS方法的锂离子超级电容器参数辨识","authors":"Teng Long, Xiaoyu Li, Jindong Tian, Yong Tian, Lijuan Xiang","doi":"10.12783/dteees/iceee2019/31800","DOIUrl":null,"url":null,"abstract":"As a kind of renewable energy source, lithium ion supercapacitors have bright prospects in national grids, new energy technologies and tram applications. It has the good features of high energy/power density, extremely low resistance, no demand for maintenance and long cycle life. In this paper, we build up the 2ndorder RC equivalent circuit model, which is based on the Thevenin equivalent circuit model. In order to improve the accuracy and stability, and achieve accurate identification of model parameters, such as OCV, R0, Rp1, Rp2, a variable forgetting factor method is introduced into the traditional fixed forgetting factor recursive least squares method. This provides a basic method and reference for the subsequent state estimation and life prediction of lithium ion supercapacitors. The accuracy of the model parameter identification method is verified by the experimental result.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"438 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Identification for Lithium Ion Supercapacitor Based on a Modified RLS Method\",\"authors\":\"Teng Long, Xiaoyu Li, Jindong Tian, Yong Tian, Lijuan Xiang\",\"doi\":\"10.12783/dteees/iceee2019/31800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a kind of renewable energy source, lithium ion supercapacitors have bright prospects in national grids, new energy technologies and tram applications. It has the good features of high energy/power density, extremely low resistance, no demand for maintenance and long cycle life. In this paper, we build up the 2ndorder RC equivalent circuit model, which is based on the Thevenin equivalent circuit model. In order to improve the accuracy and stability, and achieve accurate identification of model parameters, such as OCV, R0, Rp1, Rp2, a variable forgetting factor method is introduced into the traditional fixed forgetting factor recursive least squares method. This provides a basic method and reference for the subsequent state estimation and life prediction of lithium ion supercapacitors. The accuracy of the model parameter identification method is verified by the experimental result.\",\"PeriodicalId\":11324,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"volume\":\"438 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dteees/iceee2019/31800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子超级电容器作为一种可再生能源,在国家电网、新能源技术和有轨电车等领域有着广阔的应用前景。它具有能量/功率密度高、电阻极低、无需维护、循环寿命长等优点。本文在Thevenin等效电路模型的基础上,建立了二阶RC等效电路模型。为了提高精度和稳定性,实现对OCV、R0、Rp1、Rp2等模型参数的准确辨识,在传统的固定遗忘因子递推最小二乘法中引入了可变遗忘因子法。这为后续锂离子超级电容器的状态估计和寿命预测提供了基本的方法和参考。实验结果验证了模型参数辨识方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Identification for Lithium Ion Supercapacitor Based on a Modified RLS Method
As a kind of renewable energy source, lithium ion supercapacitors have bright prospects in national grids, new energy technologies and tram applications. It has the good features of high energy/power density, extremely low resistance, no demand for maintenance and long cycle life. In this paper, we build up the 2ndorder RC equivalent circuit model, which is based on the Thevenin equivalent circuit model. In order to improve the accuracy and stability, and achieve accurate identification of model parameters, such as OCV, R0, Rp1, Rp2, a variable forgetting factor method is introduced into the traditional fixed forgetting factor recursive least squares method. This provides a basic method and reference for the subsequent state estimation and life prediction of lithium ion supercapacitors. The accuracy of the model parameter identification method is verified by the experimental result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Environmental Performance Evaluation of Petrochemical Enterprises Based on Balanced Scorecard-Entropy Method Measurement and Numerical Simulation Analysis of Smoke Flow Field after Dust Collector Modification Research on Collaborative Filtering Recommendation Algorithm Based on Mahout Preparation of Ultrafine -Al2O3 Powder from Fly Ash by Ammonium Sulfate Roasting Technology Design of Dual Mode Power Supply Distribution Circuit with Detection and Control Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1