模板和种子对纳米SAPO-34分子筛性能的影响及其在MTO反应中的催化性能

IF 1 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Australian Journal of Chemistry Pub Date : 2023-02-28 DOI:10.1071/ch22238
Tao Jiang, Yingzhi Bai, Lu Li, Weiwei Tai, Yujia Wang, Haiyan Wang, N. Sun
{"title":"模板和种子对纳米SAPO-34分子筛性能的影响及其在MTO反应中的催化性能","authors":"Tao Jiang, Yingzhi Bai, Lu Li, Weiwei Tai, Yujia Wang, Haiyan Wang, N. Sun","doi":"10.1071/ch22238","DOIUrl":null,"url":null,"abstract":"Nanoscale SAPO-34 molecular sieves were synthesized by adding different types of seed into hydrothermal synthesis systems with tetraethylammonium hydroxide (TEAOH) and triethylamine (TEA) & tetraethylammonium bromide (TEABr) as templates. The effects of different types of template and seed on the crystal structure, morphology, grain size and acidity of the molecular sieves were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 isothermal adsorption–desorption and ammonia temperature-programmed desorption (NH3-TPD). The methanol-to-olefins (MTO) reaction performance of the synthesized samples was investigated in a fixed-bed reactor. The results showed that crystalline supernatant and seed soaking solution could be used as liquid seeds to assist in the synthesis of SAPO-34 molecular sieves with a lamellar structure. The yield of SAPO-34 synthesized by seed increased from 38.64 to 59.68%, and the methanol conversion rate was significantly improved as compared with that of SAPO-34 synthesized without seed. The nano-thickness of SAPO-34 synthesized with TEA&TEABr instead of TEAOH as template decreased from 100–150 to 40–50 nm, and the lifetime increased from 360 to 400 min with the original yield kept constant.","PeriodicalId":8575,"journal":{"name":"Australian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effects of templates and seeds on the properties of nanosheet SAPO-34 molecular sieves and their catalytic performance in the MTO reaction\",\"authors\":\"Tao Jiang, Yingzhi Bai, Lu Li, Weiwei Tai, Yujia Wang, Haiyan Wang, N. Sun\",\"doi\":\"10.1071/ch22238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoscale SAPO-34 molecular sieves were synthesized by adding different types of seed into hydrothermal synthesis systems with tetraethylammonium hydroxide (TEAOH) and triethylamine (TEA) & tetraethylammonium bromide (TEABr) as templates. The effects of different types of template and seed on the crystal structure, morphology, grain size and acidity of the molecular sieves were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 isothermal adsorption–desorption and ammonia temperature-programmed desorption (NH3-TPD). The methanol-to-olefins (MTO) reaction performance of the synthesized samples was investigated in a fixed-bed reactor. The results showed that crystalline supernatant and seed soaking solution could be used as liquid seeds to assist in the synthesis of SAPO-34 molecular sieves with a lamellar structure. The yield of SAPO-34 synthesized by seed increased from 38.64 to 59.68%, and the methanol conversion rate was significantly improved as compared with that of SAPO-34 synthesized without seed. The nano-thickness of SAPO-34 synthesized with TEA&TEABr instead of TEAOH as template decreased from 100–150 to 40–50 nm, and the lifetime increased from 360 to 400 min with the original yield kept constant.\",\"PeriodicalId\":8575,\"journal\":{\"name\":\"Australian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1071/ch22238\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1071/ch22238","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

以四乙基氢氧化铵(TEAOH)、三乙胺(TEA)和四乙基溴化铵(TEABr)为模板剂,在水热合成体系中加入不同类型的种子,合成了纳米SAPO-34分子筛。采用x射线衍射(XRD)、扫描电镜(SEM)、N2等温吸附-脱附和氨温程序脱附(NH3-TPD)表征了不同类型模板和种子对分子筛晶体结构、形貌、粒径和酸度的影响。在固定床反应器上研究了合成样品的甲醇制烯烃反应性能。结果表明,结晶上清液和种子浸泡液可作为液体种子,辅助合成具有片层结构的SAPO-34分子筛。种子合成SAPO-34的产率由38.64%提高到59.68%,甲醇转化率较无种子合成SAPO-34有显著提高。以tea和teabr代替TEAOH为模板合成的SAPO-34的纳米厚度从100-150 nm减小到40-50 nm,寿命从360 min增加到400 min,且产率保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of templates and seeds on the properties of nanosheet SAPO-34 molecular sieves and their catalytic performance in the MTO reaction
Nanoscale SAPO-34 molecular sieves were synthesized by adding different types of seed into hydrothermal synthesis systems with tetraethylammonium hydroxide (TEAOH) and triethylamine (TEA) & tetraethylammonium bromide (TEABr) as templates. The effects of different types of template and seed on the crystal structure, morphology, grain size and acidity of the molecular sieves were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 isothermal adsorption–desorption and ammonia temperature-programmed desorption (NH3-TPD). The methanol-to-olefins (MTO) reaction performance of the synthesized samples was investigated in a fixed-bed reactor. The results showed that crystalline supernatant and seed soaking solution could be used as liquid seeds to assist in the synthesis of SAPO-34 molecular sieves with a lamellar structure. The yield of SAPO-34 synthesized by seed increased from 38.64 to 59.68%, and the methanol conversion rate was significantly improved as compared with that of SAPO-34 synthesized without seed. The nano-thickness of SAPO-34 synthesized with TEA&TEABr instead of TEAOH as template decreased from 100–150 to 40–50 nm, and the lifetime increased from 360 to 400 min with the original yield kept constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian Journal of Chemistry
Australian Journal of Chemistry 化学-化学综合
CiteScore
2.50
自引率
0.00%
发文量
65
审稿时长
1.3 months
期刊介绍: Australian Journal of Chemistry - an International Journal for Chemical Science publishes research papers from all fields of chemical science. Papers that are multidisciplinary or address new or emerging areas of chemistry are particularly encouraged. Thus, the scope is dynamic. It includes (but is not limited to) synthesis, structure, new materials, macromolecules and polymers, supramolecular chemistry, analytical and environmental chemistry, natural products, biological and medicinal chemistry, nanotechnology, and surface chemistry. Australian Journal of Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
Expanding on the plecstatin anticancer agent class: exchange of the chlorido ligand for N-heterocyclic ligands The quantification of radical concentration in organic radical polymers: techniques and challenges Synthesis and stability studies of constrained peptide–antimony bicycles The cyclobutene diester approach to alkyl citrate natural products Novel fluorinated thiazolidin-4-one derivatives: synthesis and anti-cancer potential against HepG2 and HCT116 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1