使用自动编码器增强运动图像脑机接口的特征

Mahmoud A. Helal, S. Eldawlatly, M. Taher
{"title":"使用自动编码器增强运动图像脑机接口的特征","authors":"Mahmoud A. Helal, S. Eldawlatly, M. Taher","doi":"10.2316/P.2017.852-052","DOIUrl":null,"url":null,"abstract":"Motor imagery is currently one of the main applications of Brain-Computer Interface (BCI) which aims at providing the disabled with means to execute motor commands. One of the major stages of motor imagery systems is reducing the dimensions of the input data and enhancing the features prior to applying a classification stage to recognize the intended movement. In this paper, we utilize autoencoders as a powerful tool to enhance the input features of the band power filtered electroencephalography (EEG) data. We compare the performance of the autoencoder-based approach to using Principal Component Analysis (PCA). Our results demonstrate that using autoencoders with non-linear activation function achieves better performance compared to using PCA. We demonstrate the effects of varying the number of hidden nodes of the autoencoder as well as the activation function on the performance. We finally examine the characteristics of the trained autoencoders to identify the features that are most relevant for the motor imagery classification task.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"1 1","pages":"89-93"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using autoencoders for feature enhancement in motor imagery Brain-Computer Interfaces\",\"authors\":\"Mahmoud A. Helal, S. Eldawlatly, M. Taher\",\"doi\":\"10.2316/P.2017.852-052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor imagery is currently one of the main applications of Brain-Computer Interface (BCI) which aims at providing the disabled with means to execute motor commands. One of the major stages of motor imagery systems is reducing the dimensions of the input data and enhancing the features prior to applying a classification stage to recognize the intended movement. In this paper, we utilize autoencoders as a powerful tool to enhance the input features of the band power filtered electroencephalography (EEG) data. We compare the performance of the autoencoder-based approach to using Principal Component Analysis (PCA). Our results demonstrate that using autoencoders with non-linear activation function achieves better performance compared to using PCA. We demonstrate the effects of varying the number of hidden nodes of the autoencoder as well as the activation function on the performance. We finally examine the characteristics of the trained autoencoders to identify the features that are most relevant for the motor imagery classification task.\",\"PeriodicalId\":6635,\"journal\":{\"name\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"volume\":\"1 1\",\"pages\":\"89-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.852-052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

运动图像是目前脑机接口(BCI)的主要应用之一,它旨在为残疾人提供执行运动命令的手段。运动图像系统的一个主要阶段是在应用分类阶段识别预期运动之前减少输入数据的维度并增强特征。在本文中,我们利用自编码器作为一种强大的工具来增强带功率滤波脑电图数据的输入特征。我们比较了基于自编码器的方法与使用主成分分析(PCA)的性能。我们的研究结果表明,与使用PCA相比,使用非线性激活函数的自编码器获得了更好的性能。我们演示了改变自编码器的隐藏节点数量以及激活函数对性能的影响。最后,我们研究了训练后的自动编码器的特征,以确定与运动图像分类任务最相关的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using autoencoders for feature enhancement in motor imagery Brain-Computer Interfaces
Motor imagery is currently one of the main applications of Brain-Computer Interface (BCI) which aims at providing the disabled with means to execute motor commands. One of the major stages of motor imagery systems is reducing the dimensions of the input data and enhancing the features prior to applying a classification stage to recognize the intended movement. In this paper, we utilize autoencoders as a powerful tool to enhance the input features of the band power filtered electroencephalography (EEG) data. We compare the performance of the autoencoder-based approach to using Principal Component Analysis (PCA). Our results demonstrate that using autoencoders with non-linear activation function achieves better performance compared to using PCA. We demonstrate the effects of varying the number of hidden nodes of the autoencoder as well as the activation function on the performance. We finally examine the characteristics of the trained autoencoders to identify the features that are most relevant for the motor imagery classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A physical simulation to investigate the effect of anorectal angle on continence Effect of anatomical landmark placement variation on the angular parameters of the lower extremities Balancing strategy differences in bilateral knee osteoarthritis patients Controlled permeation of lidocaine hydrochloride using a smart drug delivery system Comparison of single ended and differential signalling for wired biomedical implants using SPI communication with Reed Solomon Error Correction codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1