{"title":"离子源优化的计算机模拟","authors":"I. Litovko, V. Gushenets, E. Oks","doi":"10.1109/PLASMA.2008.4590683","DOIUrl":null,"url":null,"abstract":"Computer simulation for ion sources optimization used for ion implantations is reported. Highly stripped ion source is designed to provide high current beams of multiply charged phosphorous and boron ions for high energy ion implantation. Maximum current transport for boron ions is obtained with the optimisation of geometries of the ion-optical system and experimental setup. The maximum attainable percentage of singly charged B ions was 65% and the total current transport was about 60%.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer simulation for ion sources optimization\",\"authors\":\"I. Litovko, V. Gushenets, E. Oks\",\"doi\":\"10.1109/PLASMA.2008.4590683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer simulation for ion sources optimization used for ion implantations is reported. Highly stripped ion source is designed to provide high current beams of multiply charged phosphorous and boron ions for high energy ion implantation. Maximum current transport for boron ions is obtained with the optimisation of geometries of the ion-optical system and experimental setup. The maximum attainable percentage of singly charged B ions was 65% and the total current transport was about 60%.\",\"PeriodicalId\":6359,\"journal\":{\"name\":\"2008 IEEE 35th International Conference on Plasma Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 35th International Conference on Plasma Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2008.4590683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4590683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer simulation for ion sources optimization used for ion implantations is reported. Highly stripped ion source is designed to provide high current beams of multiply charged phosphorous and boron ions for high energy ion implantation. Maximum current transport for boron ions is obtained with the optimisation of geometries of the ion-optical system and experimental setup. The maximum attainable percentage of singly charged B ions was 65% and the total current transport was about 60%.