{"title":"用软计算技术预测四分之一圆防波堤的波浪反射","authors":"N. Ramesh, S. Bhaskaran, Subba Rao","doi":"10.56042/ijms.v51i06.38731","DOIUrl":null,"url":null,"abstract":"The modified form of the semi-circular breakwater is called Quarter-Circle Breakwater (QBW). It consists of a quarter-circular surface facing incident waves, a horizontal bottom, a rear wall, and is built on a rubble mound foundation. In general, QCB may be constructed as emerged, with and without perforations that may be on one side or either side based on the coastal designer. These perforations dissipate the energy due to the formation of eddies and turbulence created inside the hollow chamber. In the present study, experimental data obtained from Binumol, 2017 are fed as input to both the models. This data is used to predict the reflection coefficient of QBW by adopting the ANN system approach. The reliability of the Artificial Neural Network (ANN) approach is done with statistical parameters, namely Model Performance Analysis (MPA) viz ., Correlation Coefficient (CC), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI). The results of the MPA indicate that the ANN is suited for predicting the reflection coefficient of QBW.","PeriodicalId":51062,"journal":{"name":"Indian Journal of Geo-Marine Sciences","volume":"136 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of wave reflection for quarter circle breakwaters using soft computing techniques\",\"authors\":\"N. Ramesh, S. Bhaskaran, Subba Rao\",\"doi\":\"10.56042/ijms.v51i06.38731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modified form of the semi-circular breakwater is called Quarter-Circle Breakwater (QBW). It consists of a quarter-circular surface facing incident waves, a horizontal bottom, a rear wall, and is built on a rubble mound foundation. In general, QCB may be constructed as emerged, with and without perforations that may be on one side or either side based on the coastal designer. These perforations dissipate the energy due to the formation of eddies and turbulence created inside the hollow chamber. In the present study, experimental data obtained from Binumol, 2017 are fed as input to both the models. This data is used to predict the reflection coefficient of QBW by adopting the ANN system approach. The reliability of the Artificial Neural Network (ANN) approach is done with statistical parameters, namely Model Performance Analysis (MPA) viz ., Correlation Coefficient (CC), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI). The results of the MPA indicate that the ANN is suited for predicting the reflection coefficient of QBW.\",\"PeriodicalId\":51062,\"journal\":{\"name\":\"Indian Journal of Geo-Marine Sciences\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Geo-Marine Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.56042/ijms.v51i06.38731\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Geo-Marine Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.56042/ijms.v51i06.38731","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Prediction of wave reflection for quarter circle breakwaters using soft computing techniques
The modified form of the semi-circular breakwater is called Quarter-Circle Breakwater (QBW). It consists of a quarter-circular surface facing incident waves, a horizontal bottom, a rear wall, and is built on a rubble mound foundation. In general, QCB may be constructed as emerged, with and without perforations that may be on one side or either side based on the coastal designer. These perforations dissipate the energy due to the formation of eddies and turbulence created inside the hollow chamber. In the present study, experimental data obtained from Binumol, 2017 are fed as input to both the models. This data is used to predict the reflection coefficient of QBW by adopting the ANN system approach. The reliability of the Artificial Neural Network (ANN) approach is done with statistical parameters, namely Model Performance Analysis (MPA) viz ., Correlation Coefficient (CC), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI). The results of the MPA indicate that the ANN is suited for predicting the reflection coefficient of QBW.
期刊介绍:
Started in 1972, this multi-disciplinary journal publishes full papers and short communications. The Indian Journal of Geo-Marine Sciences, issued monthly, is devoted to the publication of communications relating to various facets of research in (i) Marine sciences including marine engineering and marine pollution; (ii) Climate change & (iii) Geosciences i.e. geology, geography and geophysics. IJMS is a multidisciplinary journal in marine sciences and geosciences. Therefore, research and review papers and book reviews of general significance to marine sciences and geosciences which are written clearly and well organized will be given preference.