用于心脏病分类的人工神经网络参数整定框架

M. H. Abu Yazid, Muhammad Haikal Satria, Shukor Talib, Novi Azman
{"title":"用于心脏病分类的人工神经网络参数整定框架","authors":"M. H. Abu Yazid, Muhammad Haikal Satria, Shukor Talib, Novi Azman","doi":"10.1109/EECSI.2018.8752821","DOIUrl":null,"url":null,"abstract":"Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset.","PeriodicalId":6543,"journal":{"name":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","volume":"31 2 1","pages":"674-679"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification\",\"authors\":\"M. H. Abu Yazid, Muhammad Haikal Satria, Shukor Talib, Novi Azman\",\"doi\":\"10.1109/EECSI.2018.8752821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset.\",\"PeriodicalId\":6543,\"journal\":{\"name\":\"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)\",\"volume\":\"31 2 1\",\"pages\":\"674-679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EECSI.2018.8752821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EECSI.2018.8752821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

心脏病是世界上导致死亡的主要原因之一。人工神经网络作为心脏病检测决策支持工具的应用。然而,人工神经网络需要大量的参数设置,才能找到产生最佳性能的最优参数设置。提出了人工神经网络的参数整定框架。使用Statlog心脏病数据集和Cleveland心脏病数据集来评估所提出框架的性能。结果表明,所提出的框架能够产生较高的分类精度,其中Cleveland数据集的总体分类精度为90.9%,Statlog数据集的总体分类精度为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification
Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Low Noise Micro Liter Syringe Pump for Quartz Crystal Microbalance Sensor Development of Mobile Based Educational Game as a Learning Media for Basic Programming in VHS Sentiment Analysis Based on Appraisal Theory for Assessing Incumbent Electability Variance and Symmetrical-based Approach for Optimal Alignment of 3D Model Comparison of LFC Optimization on Micro-hydro using PID, CES, and SMES based Firefly Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1