Aniket S. Patankar, Xiao-Yu Wu, Won-Seok Choi, H. Tuller, A. Ghoniem
{"title":"热化学除氧反应器列车系统中高效太阳能热化学制氢","authors":"Aniket S. Patankar, Xiao-Yu Wu, Won-Seok Choi, H. Tuller, A. Ghoniem","doi":"10.1115/imece2022-94821","DOIUrl":null,"url":null,"abstract":"Solar Thermochemical Hydrogen Production (STCH) is a promising technology that uses high-temperature heat directly to split water. The authors have previously proposed a Reactor Train System (RTS) that addresses the largest source of inefficiency in state-of-the-art STCH systems — solid heat recovery — by using multiple moving reactors that exchange heat radiatively between STCH steps. In this work, another major source of inefficiency — oxygen removal during metal reduction — is addressed. Two oxygen pumping schemes are considered — vacuum pumping (VP) and thermochemical oxygen pumping (TcOP). For vacuum pumping, the modularity of RTS enables a ‘Pressure Cascade’ which reduces pumping work by a factor of four and the capex by a factor of five as compared to a single-step VP scheme. The optimized RTS + VP system achieves 31% heat-to-hydrogen conversion efficiency with ceria despite the low efficiency of vacuum pumps at low pressures. Thermochemical Oxygen Pumping (TcOP) uses a second redox material — SrFeO3 — to pump oxygen. This material is transported in reactors moving in the opposite direction to the main RTS train. The optimized RTS + TcOP achieves morethan 40% heat-to-hydrogen efficiency, while producing twice as much hydrogen per kilogram of ceria as the RTS + VP system.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"355 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Solar Thermochemical Hydrogen Production in a Reactor Train System With Thermochemical Oxygen Removal\",\"authors\":\"Aniket S. Patankar, Xiao-Yu Wu, Won-Seok Choi, H. Tuller, A. Ghoniem\",\"doi\":\"10.1115/imece2022-94821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar Thermochemical Hydrogen Production (STCH) is a promising technology that uses high-temperature heat directly to split water. The authors have previously proposed a Reactor Train System (RTS) that addresses the largest source of inefficiency in state-of-the-art STCH systems — solid heat recovery — by using multiple moving reactors that exchange heat radiatively between STCH steps. In this work, another major source of inefficiency — oxygen removal during metal reduction — is addressed. Two oxygen pumping schemes are considered — vacuum pumping (VP) and thermochemical oxygen pumping (TcOP). For vacuum pumping, the modularity of RTS enables a ‘Pressure Cascade’ which reduces pumping work by a factor of four and the capex by a factor of five as compared to a single-step VP scheme. The optimized RTS + VP system achieves 31% heat-to-hydrogen conversion efficiency with ceria despite the low efficiency of vacuum pumps at low pressures. Thermochemical Oxygen Pumping (TcOP) uses a second redox material — SrFeO3 — to pump oxygen. This material is transported in reactors moving in the opposite direction to the main RTS train. The optimized RTS + TcOP achieves morethan 40% heat-to-hydrogen efficiency, while producing twice as much hydrogen per kilogram of ceria as the RTS + VP system.\",\"PeriodicalId\":23629,\"journal\":{\"name\":\"Volume 6: Energy\",\"volume\":\"355 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Solar Thermochemical Hydrogen Production in a Reactor Train System With Thermochemical Oxygen Removal
Solar Thermochemical Hydrogen Production (STCH) is a promising technology that uses high-temperature heat directly to split water. The authors have previously proposed a Reactor Train System (RTS) that addresses the largest source of inefficiency in state-of-the-art STCH systems — solid heat recovery — by using multiple moving reactors that exchange heat radiatively between STCH steps. In this work, another major source of inefficiency — oxygen removal during metal reduction — is addressed. Two oxygen pumping schemes are considered — vacuum pumping (VP) and thermochemical oxygen pumping (TcOP). For vacuum pumping, the modularity of RTS enables a ‘Pressure Cascade’ which reduces pumping work by a factor of four and the capex by a factor of five as compared to a single-step VP scheme. The optimized RTS + VP system achieves 31% heat-to-hydrogen conversion efficiency with ceria despite the low efficiency of vacuum pumps at low pressures. Thermochemical Oxygen Pumping (TcOP) uses a second redox material — SrFeO3 — to pump oxygen. This material is transported in reactors moving in the opposite direction to the main RTS train. The optimized RTS + TcOP achieves morethan 40% heat-to-hydrogen efficiency, while producing twice as much hydrogen per kilogram of ceria as the RTS + VP system.