Andrea R Costantino, J. Neudörfl, Romina A. Ocampo, Laura A. Svetaz, S. Zacchino, L. Koll, Sandra D. Mandolesi
{"title":"(S)-二醇二酯衍生的光学活性双有机锡化合物的合成、表征及抗真菌活性评价","authors":"Andrea R Costantino, J. Neudörfl, Romina A. Ocampo, Laura A. Svetaz, S. Zacchino, L. Koll, Sandra D. Mandolesi","doi":"10.2174/1874842201906010034","DOIUrl":null,"url":null,"abstract":"\n \n Organotin(IV) derivatives have appeared recently as potential biologically active metallopharmaceuticals exhibiting a variety of therapeutic activities. Hence, it is important to study the synthesis of new organotin compounds with low toxicity that may be of pharmacological interest.\n \n \n \n This study focuses on the synthesis of new bis-stannylated derivatives with C2 symmetry that could be tested as antifungal agents against two clinical important fungal species, Cryptococcus neoformans and Candida albicans.\n \n \n \n The radical addition of triorganotin hydrides (R3SnH) and diorganotin chlorohydrides (R2ClSnH) to bis-α,β-unsaturated diesters derived from (S)-BINOL led to the corresponding new bis-stannylated derivatives with C2 symmetry. Nine pure organotin compounds were synthesized with defined stereochemistry. Four of them were enantiomerically pure and four were diastereoisomeric mixtures.\n \n \n \n All new organotin compounds were fully characterized, those with phenyl ligands bonded to tin were the most active compounds against both the strains (Cryptococcus neoformans and Candida albicans), with activity parameters of IC50 close to those of the reference drug (amphotericin B).\n \n \n \n Nine pure organotin compounds with C2 symmetry were synthesized with defined stereochemistry and their antifungal properties were tested against two clinical important fungi with IC values close to those of the reference drug. The structure-containing preferably two or three phenyl groups joined to the tin atom were highly active against both the strains compared with those possessing tri-n-butyl groups.\n","PeriodicalId":39133,"journal":{"name":"Open Medicinal Chemistry Journal","volume":"228 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synthesis, Characterization and Antifungal Assessment of Optically Active Bis-organotin Compounds Derived from (S)-BINOL Diesters\",\"authors\":\"Andrea R Costantino, J. Neudörfl, Romina A. Ocampo, Laura A. Svetaz, S. Zacchino, L. Koll, Sandra D. Mandolesi\",\"doi\":\"10.2174/1874842201906010034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Organotin(IV) derivatives have appeared recently as potential biologically active metallopharmaceuticals exhibiting a variety of therapeutic activities. Hence, it is important to study the synthesis of new organotin compounds with low toxicity that may be of pharmacological interest.\\n \\n \\n \\n This study focuses on the synthesis of new bis-stannylated derivatives with C2 symmetry that could be tested as antifungal agents against two clinical important fungal species, Cryptococcus neoformans and Candida albicans.\\n \\n \\n \\n The radical addition of triorganotin hydrides (R3SnH) and diorganotin chlorohydrides (R2ClSnH) to bis-α,β-unsaturated diesters derived from (S)-BINOL led to the corresponding new bis-stannylated derivatives with C2 symmetry. Nine pure organotin compounds were synthesized with defined stereochemistry. Four of them were enantiomerically pure and four were diastereoisomeric mixtures.\\n \\n \\n \\n All new organotin compounds were fully characterized, those with phenyl ligands bonded to tin were the most active compounds against both the strains (Cryptococcus neoformans and Candida albicans), with activity parameters of IC50 close to those of the reference drug (amphotericin B).\\n \\n \\n \\n Nine pure organotin compounds with C2 symmetry were synthesized with defined stereochemistry and their antifungal properties were tested against two clinical important fungi with IC values close to those of the reference drug. The structure-containing preferably two or three phenyl groups joined to the tin atom were highly active against both the strains compared with those possessing tri-n-butyl groups.\\n\",\"PeriodicalId\":39133,\"journal\":{\"name\":\"Open Medicinal Chemistry Journal\",\"volume\":\"228 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Medicinal Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874842201906010034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicinal Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874842201906010034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Synthesis, Characterization and Antifungal Assessment of Optically Active Bis-organotin Compounds Derived from (S)-BINOL Diesters
Organotin(IV) derivatives have appeared recently as potential biologically active metallopharmaceuticals exhibiting a variety of therapeutic activities. Hence, it is important to study the synthesis of new organotin compounds with low toxicity that may be of pharmacological interest.
This study focuses on the synthesis of new bis-stannylated derivatives with C2 symmetry that could be tested as antifungal agents against two clinical important fungal species, Cryptococcus neoformans and Candida albicans.
The radical addition of triorganotin hydrides (R3SnH) and diorganotin chlorohydrides (R2ClSnH) to bis-α,β-unsaturated diesters derived from (S)-BINOL led to the corresponding new bis-stannylated derivatives with C2 symmetry. Nine pure organotin compounds were synthesized with defined stereochemistry. Four of them were enantiomerically pure and four were diastereoisomeric mixtures.
All new organotin compounds were fully characterized, those with phenyl ligands bonded to tin were the most active compounds against both the strains (Cryptococcus neoformans and Candida albicans), with activity parameters of IC50 close to those of the reference drug (amphotericin B).
Nine pure organotin compounds with C2 symmetry were synthesized with defined stereochemistry and their antifungal properties were tested against two clinical important fungi with IC values close to those of the reference drug. The structure-containing preferably two or three phenyl groups joined to the tin atom were highly active against both the strains compared with those possessing tri-n-butyl groups.