V. Ivanov, A. Lopatkin, A. Menyajlo, E. V. Spirin, S. Chekin, S. Lovachev, A. M. Korelo, V. Solomatin
{"title":"与快中子反应堆闭合核燃料循环相关的放射性等效的可实现性:到2100年俄罗斯核电发展情景中不确定性因素的影响第1部分。快堆和热堆","authors":"V. Ivanov, A. Lopatkin, A. Menyajlo, E. V. Spirin, S. Chekin, S. Lovachev, A. M. Korelo, V. Solomatin","doi":"10.21870/0131-3878-2021-30-2-62-76","DOIUrl":null,"url":null,"abstract":"The Russian Government approved the Energy Strategy of the Russian Federation (Government Decree No.1523-r of June 9, 2020). The Strategy envisages the use of both thermal (TR) and fast (FR) reactors. The Strategy points out that the problems of nuclear power are associated with po-tential high expenses for irradiated fuel and radioactive wastes management. The previously de-signed model of the Russian nuclear energy development suggested that fast reactors only would operate at NPPs after 2010. Radiological equivalence, expressed as the equivalence of lifetime radiation risks to the public from radioactive wastes and from primary uranium ore, was shown to be achieved after 100-year storage. The burnup of 241Am, 237Np и 242Сm in closed nu-clear fuel cycle with fast reactors is a key part in the achievability of radiation risks equivalence. Scenarios of the Russian nuclear energy development through to 2100 with account of uncertain-ty factors in the measurement of contribution of fast and thermal reactors to the electric energy production are considered in the paper. The following three scenarios were developed: uncer-tainty is replaced by FRs; uncertainty is replaced by TRs; 50 per cent of FRs and 50 per cent of TRs replace uncertainty. If the energy is produced by fast reactors only (scenario 1) radiological equivalence was found to be achieved in 412 years. In two other scenarios radiological equiva-lence will be achieved after more than 1000 years. Contribution of main dose-forming radionu-clides and relevant ratios of potential biological hazards is included in models regardless of whether uncertainty in nuclear energy development is taking or not taking into account. Results of the study of conditions for radiological equivalence achievement should be used for amending Strategic plan of Russian nuclear power development through to 2100 that meets requirements of radiation ecology and radiation protection of the public.","PeriodicalId":6315,"journal":{"name":"\"Radiation and Risk\" Bulletin of the National Radiation and Epidemiological Registry","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achievability of radiological equivalence associated with closed nuclear fuel cycle with fast reactors: impact of uncertainty factors in scenarios of Russian nuclear power development through to 2100. Part 1. Fast and thermal reactors\",\"authors\":\"V. Ivanov, A. Lopatkin, A. Menyajlo, E. V. Spirin, S. Chekin, S. Lovachev, A. M. Korelo, V. Solomatin\",\"doi\":\"10.21870/0131-3878-2021-30-2-62-76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Russian Government approved the Energy Strategy of the Russian Federation (Government Decree No.1523-r of June 9, 2020). The Strategy envisages the use of both thermal (TR) and fast (FR) reactors. The Strategy points out that the problems of nuclear power are associated with po-tential high expenses for irradiated fuel and radioactive wastes management. The previously de-signed model of the Russian nuclear energy development suggested that fast reactors only would operate at NPPs after 2010. Radiological equivalence, expressed as the equivalence of lifetime radiation risks to the public from radioactive wastes and from primary uranium ore, was shown to be achieved after 100-year storage. The burnup of 241Am, 237Np и 242Сm in closed nu-clear fuel cycle with fast reactors is a key part in the achievability of radiation risks equivalence. Scenarios of the Russian nuclear energy development through to 2100 with account of uncertain-ty factors in the measurement of contribution of fast and thermal reactors to the electric energy production are considered in the paper. The following three scenarios were developed: uncer-tainty is replaced by FRs; uncertainty is replaced by TRs; 50 per cent of FRs and 50 per cent of TRs replace uncertainty. If the energy is produced by fast reactors only (scenario 1) radiological equivalence was found to be achieved in 412 years. In two other scenarios radiological equiva-lence will be achieved after more than 1000 years. Contribution of main dose-forming radionu-clides and relevant ratios of potential biological hazards is included in models regardless of whether uncertainty in nuclear energy development is taking or not taking into account. Results of the study of conditions for radiological equivalence achievement should be used for amending Strategic plan of Russian nuclear power development through to 2100 that meets requirements of radiation ecology and radiation protection of the public.\",\"PeriodicalId\":6315,\"journal\":{\"name\":\"\\\"Radiation and Risk\\\" Bulletin of the National Radiation and Epidemiological Registry\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\\\"Radiation and Risk\\\" Bulletin of the National Radiation and Epidemiological Registry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21870/0131-3878-2021-30-2-62-76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"\"Radiation and Risk\" Bulletin of the National Radiation and Epidemiological Registry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21870/0131-3878-2021-30-2-62-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achievability of radiological equivalence associated with closed nuclear fuel cycle with fast reactors: impact of uncertainty factors in scenarios of Russian nuclear power development through to 2100. Part 1. Fast and thermal reactors
The Russian Government approved the Energy Strategy of the Russian Federation (Government Decree No.1523-r of June 9, 2020). The Strategy envisages the use of both thermal (TR) and fast (FR) reactors. The Strategy points out that the problems of nuclear power are associated with po-tential high expenses for irradiated fuel and radioactive wastes management. The previously de-signed model of the Russian nuclear energy development suggested that fast reactors only would operate at NPPs after 2010. Radiological equivalence, expressed as the equivalence of lifetime radiation risks to the public from radioactive wastes and from primary uranium ore, was shown to be achieved after 100-year storage. The burnup of 241Am, 237Np и 242Сm in closed nu-clear fuel cycle with fast reactors is a key part in the achievability of radiation risks equivalence. Scenarios of the Russian nuclear energy development through to 2100 with account of uncertain-ty factors in the measurement of contribution of fast and thermal reactors to the electric energy production are considered in the paper. The following three scenarios were developed: uncer-tainty is replaced by FRs; uncertainty is replaced by TRs; 50 per cent of FRs and 50 per cent of TRs replace uncertainty. If the energy is produced by fast reactors only (scenario 1) radiological equivalence was found to be achieved in 412 years. In two other scenarios radiological equiva-lence will be achieved after more than 1000 years. Contribution of main dose-forming radionu-clides and relevant ratios of potential biological hazards is included in models regardless of whether uncertainty in nuclear energy development is taking or not taking into account. Results of the study of conditions for radiological equivalence achievement should be used for amending Strategic plan of Russian nuclear power development through to 2100 that meets requirements of radiation ecology and radiation protection of the public.