稀疏直方图图像的有损压缩

M. Iwahashi, H. Kobayashi, H. Kiya
{"title":"稀疏直方图图像的有损压缩","authors":"M. Iwahashi, H. Kobayashi, H. Kiya","doi":"10.1109/ICASSP.2012.6288143","DOIUrl":null,"url":null,"abstract":"In this paper, a lossy data compression for a sparse histogram image signal is proposed. It is extended from an existing lossless coding which is based on a lossless histogram packing and a lossless coding. We introduce a lossy mapping, which has less computational load than the rate-distortion optimized Lloyd-Max quantization, and combine it with a lossless coding. It was confirmed that the proposed method attains higher performance in the rate-distortion plane than existing methods. This is because it can utilize histogram sparseness of images, and also its inverse mapping does not magnify quantization noise.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Lossy compression of sparse histogram image\",\"authors\":\"M. Iwahashi, H. Kobayashi, H. Kiya\",\"doi\":\"10.1109/ICASSP.2012.6288143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a lossy data compression for a sparse histogram image signal is proposed. It is extended from an existing lossless coding which is based on a lossless histogram packing and a lossless coding. We introduce a lossy mapping, which has less computational load than the rate-distortion optimized Lloyd-Max quantization, and combine it with a lossless coding. It was confirmed that the proposed method attains higher performance in the rate-distortion plane than existing methods. This is because it can utilize histogram sparseness of images, and also its inverse mapping does not magnify quantization noise.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种稀疏直方图图像信号的有损数据压缩方法。它是在现有无损编码的基础上扩展而来的一种基于无损直方图打包和无损编码的无损编码。我们引入了一种比率失真优化的Lloyd-Max量化计算量更小的有损映射,并将其与无损编码相结合。实验结果表明,该方法在速率畸变平面上比现有方法具有更高的性能。这是因为它可以利用图像的直方图稀疏性,而且它的逆映射不会放大量化噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossy compression of sparse histogram image
In this paper, a lossy data compression for a sparse histogram image signal is proposed. It is extended from an existing lossless coding which is based on a lossless histogram packing and a lossless coding. We introduce a lossy mapping, which has less computational load than the rate-distortion optimized Lloyd-Max quantization, and combine it with a lossless coding. It was confirmed that the proposed method attains higher performance in the rate-distortion plane than existing methods. This is because it can utilize histogram sparseness of images, and also its inverse mapping does not magnify quantization noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1