{"title":"多孔可拉伸/可收缩Riga板变形的三级改性纳米流体流动的重叠网格SQLM","authors":"M. Mkhatshwa, M. Khumalo","doi":"10.1515/nleng-2022-0276","DOIUrl":null,"url":null,"abstract":"Abstract The improvement in thermal performance of fluid and the control of energy loss are equitably significant. Therefore, the purpose of this study is to analyze entropy generation, stagnation point flow, and thermal characteristics of non-Newtonian third-grade modified hybrid nanofluid generated by a stretchable/shrinkable Riga plate in a porous medium with varying flow viscosity. In this analysis, a modification of hybrid nanofluid is considered by using pure water as a base fluid and three various nanomaterials (aluminium oxide, copper, and nickel) as nanoparticles in the characterization of heat transfer. Furthermore, the contribution of heat source/sink and viscous dissipation are accounted for in the model. The suited transformations are enforced to remodel the governing mathematical equations to produce ordinary differential equations that are conveniently tackled via spectral quasilinearization method (SQLM) along with the overlapping grid idea to yield numerical solutions. The preference of this approach over others has been justified through discussion of error bound theorems, residual and solution errors, computational time, and conditioning of matrices. The physical significance of disparate governing parameters on flow variables, velocity gradient, thermal rate, and entropy generation are scrutinized through graphs and tables. Crucial findings of the study include that temperature of the modified hybrid nanofluid enhances quickly (better thermal conductor) than temperature of single nanofluid, hybrid nanofluid, and conventional third-grade fluid for higher Biot number, variable viscosity, and heat source parameters. Mass suction enhances fluid flow and physical quantities of interest, but suppresses the fluid temperature. An increase in variable fluid viscosity, modified Hartmann number, and third-grade parameters enhances the wall drag coefficient while lowering the rate of heat transfer, and the opposite is true for porous media. More entropy is generated in the system by high variable fluid viscosity, suction, viscous dissipation, modified Hartman number, and non-Newtonian parameters. Owing to high velocity and temperature associated with modified hybrid nanoparticles, modified hybrid technology is recommended in enhancing the physical attributes of the fluid with minimal cost effects. In engineering and industrial point of view, this study can contribute significantly in thermal improvement of the working fluid.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overlapping grid SQLM for third-grade modified nanofluid flow deformed by porous stretchable/shrinkable Riga plate\",\"authors\":\"M. Mkhatshwa, M. Khumalo\",\"doi\":\"10.1515/nleng-2022-0276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The improvement in thermal performance of fluid and the control of energy loss are equitably significant. Therefore, the purpose of this study is to analyze entropy generation, stagnation point flow, and thermal characteristics of non-Newtonian third-grade modified hybrid nanofluid generated by a stretchable/shrinkable Riga plate in a porous medium with varying flow viscosity. In this analysis, a modification of hybrid nanofluid is considered by using pure water as a base fluid and three various nanomaterials (aluminium oxide, copper, and nickel) as nanoparticles in the characterization of heat transfer. Furthermore, the contribution of heat source/sink and viscous dissipation are accounted for in the model. The suited transformations are enforced to remodel the governing mathematical equations to produce ordinary differential equations that are conveniently tackled via spectral quasilinearization method (SQLM) along with the overlapping grid idea to yield numerical solutions. The preference of this approach over others has been justified through discussion of error bound theorems, residual and solution errors, computational time, and conditioning of matrices. The physical significance of disparate governing parameters on flow variables, velocity gradient, thermal rate, and entropy generation are scrutinized through graphs and tables. Crucial findings of the study include that temperature of the modified hybrid nanofluid enhances quickly (better thermal conductor) than temperature of single nanofluid, hybrid nanofluid, and conventional third-grade fluid for higher Biot number, variable viscosity, and heat source parameters. Mass suction enhances fluid flow and physical quantities of interest, but suppresses the fluid temperature. An increase in variable fluid viscosity, modified Hartmann number, and third-grade parameters enhances the wall drag coefficient while lowering the rate of heat transfer, and the opposite is true for porous media. More entropy is generated in the system by high variable fluid viscosity, suction, viscous dissipation, modified Hartman number, and non-Newtonian parameters. Owing to high velocity and temperature associated with modified hybrid nanoparticles, modified hybrid technology is recommended in enhancing the physical attributes of the fluid with minimal cost effects. In engineering and industrial point of view, this study can contribute significantly in thermal improvement of the working fluid.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Overlapping grid SQLM for third-grade modified nanofluid flow deformed by porous stretchable/shrinkable Riga plate
Abstract The improvement in thermal performance of fluid and the control of energy loss are equitably significant. Therefore, the purpose of this study is to analyze entropy generation, stagnation point flow, and thermal characteristics of non-Newtonian third-grade modified hybrid nanofluid generated by a stretchable/shrinkable Riga plate in a porous medium with varying flow viscosity. In this analysis, a modification of hybrid nanofluid is considered by using pure water as a base fluid and three various nanomaterials (aluminium oxide, copper, and nickel) as nanoparticles in the characterization of heat transfer. Furthermore, the contribution of heat source/sink and viscous dissipation are accounted for in the model. The suited transformations are enforced to remodel the governing mathematical equations to produce ordinary differential equations that are conveniently tackled via spectral quasilinearization method (SQLM) along with the overlapping grid idea to yield numerical solutions. The preference of this approach over others has been justified through discussion of error bound theorems, residual and solution errors, computational time, and conditioning of matrices. The physical significance of disparate governing parameters on flow variables, velocity gradient, thermal rate, and entropy generation are scrutinized through graphs and tables. Crucial findings of the study include that temperature of the modified hybrid nanofluid enhances quickly (better thermal conductor) than temperature of single nanofluid, hybrid nanofluid, and conventional third-grade fluid for higher Biot number, variable viscosity, and heat source parameters. Mass suction enhances fluid flow and physical quantities of interest, but suppresses the fluid temperature. An increase in variable fluid viscosity, modified Hartmann number, and third-grade parameters enhances the wall drag coefficient while lowering the rate of heat transfer, and the opposite is true for porous media. More entropy is generated in the system by high variable fluid viscosity, suction, viscous dissipation, modified Hartman number, and non-Newtonian parameters. Owing to high velocity and temperature associated with modified hybrid nanoparticles, modified hybrid technology is recommended in enhancing the physical attributes of the fluid with minimal cost effects. In engineering and industrial point of view, this study can contribute significantly in thermal improvement of the working fluid.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.