基于基数-16算法的脉冲神经网络指数函数加速器

Chenxiao Lin, Qingyang Zeng, D. Shang
{"title":"基于基数-16算法的脉冲神经网络指数函数加速器","authors":"Chenxiao Lin, Qingyang Zeng, D. Shang","doi":"10.1587/elex.19.20220393","DOIUrl":null,"url":null,"abstract":"A range reduction method for shift-and-add algorithms for exponential functions is proposed in this paper. An exponential function accelerator with this method and radix-16 shift-and-add algorithm has been implemented in SMIC 55 nm CMOS process. Compared with the existing method, the proposed method reduces the latency (cycles) by 33% and 20% for 16 and 32-bit precision results, respectively; thereby increasing the throughputto50Mexp/sandreducingthepowerconsumptionto4.6pJ/exp.Inaddition,thismethodsavesdieareasincenoarithmeticunitsareadopted.Thisexponentialacceleratorissupposedtobeusedinaneuromorphicchipforspikingneuralnetworkmodeling.","PeriodicalId":13437,"journal":{"name":"IEICE Electron. Express","volume":"101 1","pages":"20220393"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exponential function accelerator with radix-16 algorithm for spiking neural networks\",\"authors\":\"Chenxiao Lin, Qingyang Zeng, D. Shang\",\"doi\":\"10.1587/elex.19.20220393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A range reduction method for shift-and-add algorithms for exponential functions is proposed in this paper. An exponential function accelerator with this method and radix-16 shift-and-add algorithm has been implemented in SMIC 55 nm CMOS process. Compared with the existing method, the proposed method reduces the latency (cycles) by 33% and 20% for 16 and 32-bit precision results, respectively; thereby increasing the throughputto50Mexp/sandreducingthepowerconsumptionto4.6pJ/exp.Inaddition,thismethodsavesdieareasincenoarithmeticunitsareadopted.Thisexponentialacceleratorissupposedtobeusedinaneuromorphicchipforspikingneuralnetworkmodeling.\",\"PeriodicalId\":13437,\"journal\":{\"name\":\"IEICE Electron. Express\",\"volume\":\"101 1\",\"pages\":\"20220393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Electron. Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/elex.19.20220393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Electron. Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.19.20220393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种指数函数移位加算法的范围缩减方法。采用该方法和基数-16移位加算法的指数函数加速器已在中芯55nm CMOS工艺上实现。与现有方法相比,该方法在16位精度和32位精度下的延迟(周期)分别减少33%和20%;从而将吞吐量提高到50mexp /exp,并将功耗降低到4.6 pj /exp。此外,由于采用了改进算法单元,该方法节省了面积。该指数加速器被认为是用于spikingneuralnetwork建模的神经形态芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An exponential function accelerator with radix-16 algorithm for spiking neural networks
A range reduction method for shift-and-add algorithms for exponential functions is proposed in this paper. An exponential function accelerator with this method and radix-16 shift-and-add algorithm has been implemented in SMIC 55 nm CMOS process. Compared with the existing method, the proposed method reduces the latency (cycles) by 33% and 20% for 16 and 32-bit precision results, respectively; thereby increasing the throughputto50Mexp/sandreducingthepowerconsumptionto4.6pJ/exp.Inaddition,thismethodsavesdieareasincenoarithmeticunitsareadopted.Thisexponentialacceleratorissupposedtobeusedinaneuromorphicchipforspikingneuralnetworkmodeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum:A 240μW 17bit ENOB ΔΣ modulator using 2nd-order noise-shaped integrating quantizer [IEICE Electronics Express Vol. 19 (2022) No. 5 pp. 20220038] Model-free double fractional-order integral sliding mode control for permanent magnet synchronous motor based electric mopeds drive system Bayesian neural network based inductance calculations of wireless power transfer systems EDF laser displacement sensor based on bending characteristics of polarization-independent double-pass cascaded-chirped long-period fiber grating A five-level inverter based on differential structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1