{"title":"用试验和有限元分析评价直接和间接加载的矩形自密实钢筋混凝土细长梁的抗剪强度","authors":"T. Alhussein, Jamal Abdul Samad, Khudhair","doi":"10.32792/utq/utj/vol15/2/4","DOIUrl":null,"url":null,"abstract":"This study presents an experimental and numerical evaluation of the shear behavior of recycled aggregate concrete beams without transversal reinforcement. These beams were manufactured as self-compacted concrete with the use of both natural aggregate and recycled aggregate. The beams were subjected to direct and indirect loading conditions. The mechanical properties of four mixes were characterized in terms of compressive strength, splitting tensile strength, and elastic modulus. The experimental results showed that the shear capacity of recycled aggregate concrete is lower than those made with natural aggregate. The experimental shear capacities of the tested beams were compared with ACI318M-14 and relevant research studies in the literature. The ratio of experimental shear stress divided by the root square of concrete compressive strength (𝑣𝑒𝑥𝑝/ √𝑓𝑐`) , which indicates the ability of diagonally cracked concrete to transmit tension and shear. was remained for all configurations greater than 0.17, which is the minimum value recommended by the ACI318-14. Results from nonlinear finite element models were compared with the experimental data, and good agreement was achieved.","PeriodicalId":23465,"journal":{"name":"University of Thi-Qar Journal","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear Strength Evaluation of Directly and Indirectly Loaded Rectangular Recycled Self-Compacted Reinforced Concrete Slender Beams Using Experimental and Finite Element Analysis\",\"authors\":\"T. Alhussein, Jamal Abdul Samad, Khudhair\",\"doi\":\"10.32792/utq/utj/vol15/2/4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an experimental and numerical evaluation of the shear behavior of recycled aggregate concrete beams without transversal reinforcement. These beams were manufactured as self-compacted concrete with the use of both natural aggregate and recycled aggregate. The beams were subjected to direct and indirect loading conditions. The mechanical properties of four mixes were characterized in terms of compressive strength, splitting tensile strength, and elastic modulus. The experimental results showed that the shear capacity of recycled aggregate concrete is lower than those made with natural aggregate. The experimental shear capacities of the tested beams were compared with ACI318M-14 and relevant research studies in the literature. The ratio of experimental shear stress divided by the root square of concrete compressive strength (𝑣𝑒𝑥𝑝/ √𝑓𝑐`) , which indicates the ability of diagonally cracked concrete to transmit tension and shear. was remained for all configurations greater than 0.17, which is the minimum value recommended by the ACI318-14. Results from nonlinear finite element models were compared with the experimental data, and good agreement was achieved.\",\"PeriodicalId\":23465,\"journal\":{\"name\":\"University of Thi-Qar Journal\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"University of Thi-Qar Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32792/utq/utj/vol15/2/4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Thi-Qar Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32792/utq/utj/vol15/2/4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shear Strength Evaluation of Directly and Indirectly Loaded Rectangular Recycled Self-Compacted Reinforced Concrete Slender Beams Using Experimental and Finite Element Analysis
This study presents an experimental and numerical evaluation of the shear behavior of recycled aggregate concrete beams without transversal reinforcement. These beams were manufactured as self-compacted concrete with the use of both natural aggregate and recycled aggregate. The beams were subjected to direct and indirect loading conditions. The mechanical properties of four mixes were characterized in terms of compressive strength, splitting tensile strength, and elastic modulus. The experimental results showed that the shear capacity of recycled aggregate concrete is lower than those made with natural aggregate. The experimental shear capacities of the tested beams were compared with ACI318M-14 and relevant research studies in the literature. The ratio of experimental shear stress divided by the root square of concrete compressive strength (𝑣𝑒𝑥𝑝/ √𝑓𝑐`) , which indicates the ability of diagonally cracked concrete to transmit tension and shear. was remained for all configurations greater than 0.17, which is the minimum value recommended by the ACI318-14. Results from nonlinear finite element models were compared with the experimental data, and good agreement was achieved.