{"title":"间隙和结构耦合参数对起落架摆振稳定性的影响","authors":"S. Ruan, M. Zhang, Y. Hong, H. Nie","doi":"10.1017/aer.2022.109","DOIUrl":null,"url":null,"abstract":"\n There are many factors causing the shimmy of the aircraft landing gear and structural clearance of landing gear is a typical factor. Some aircraft in service or operation did not shimmy before, but suddenly appeared after a period of use. To solve the problem of clearance shimmy during the service of a certain aircraft, we established a dynamic model of rotating gear with clearance based on the flexible multi-body dynamics model of landing gear and L-N contact theory. We defined different types of clearance and established a mechanical model of aircraft pendulum vibration considering the clearance of landing gear structure for dynamic simulation, and studied the effects of different clearance types, clearance size of motion pair and different clearance positions on the stability of pendulum. The results show that the axial clearance has little effect on the shimmy performance of landing gear; the radial clearance has a certain effect on the shimmy performance of medium speed running, which slightly improves the shimmy damping required by medium speed running; the rotational clearance affects the shimmy performance of the nose landing gear by affecting the force transmission of structural components. The required shimmy damping coefficient increases at low speed and decreases at high speed. The main reason for the return clearance is that during the return, the shimmy damper does not work, which leads to the decrease of the shimmy damping performance and the increase of the required shimmy damping coefficient in the whole speed range. Meanwhile, the structural clearance will increase the shimmy frequency of the nose landing gear. By analysing the yaw angle of the nose landing gear and the time domain curve of the yaw angle of the yaw damper, we can determine which structure of the landing gear and which type of clearance is the cause of the yaw. Finally, the coupling effect caused by the main structural parameters of the landing gear in “gap shimmy” was analysed according to different mechanical stability distances and strut stiffness of the nose landing gear, providing reference for aircraft anti-shimmy design, nose landing gear fault diagnosis and nose landing gear maintenance support.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of clearance and structural coupling parameters on shimmy stability of landing gear\",\"authors\":\"S. Ruan, M. Zhang, Y. Hong, H. Nie\",\"doi\":\"10.1017/aer.2022.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are many factors causing the shimmy of the aircraft landing gear and structural clearance of landing gear is a typical factor. Some aircraft in service or operation did not shimmy before, but suddenly appeared after a period of use. To solve the problem of clearance shimmy during the service of a certain aircraft, we established a dynamic model of rotating gear with clearance based on the flexible multi-body dynamics model of landing gear and L-N contact theory. We defined different types of clearance and established a mechanical model of aircraft pendulum vibration considering the clearance of landing gear structure for dynamic simulation, and studied the effects of different clearance types, clearance size of motion pair and different clearance positions on the stability of pendulum. The results show that the axial clearance has little effect on the shimmy performance of landing gear; the radial clearance has a certain effect on the shimmy performance of medium speed running, which slightly improves the shimmy damping required by medium speed running; the rotational clearance affects the shimmy performance of the nose landing gear by affecting the force transmission of structural components. The required shimmy damping coefficient increases at low speed and decreases at high speed. The main reason for the return clearance is that during the return, the shimmy damper does not work, which leads to the decrease of the shimmy damping performance and the increase of the required shimmy damping coefficient in the whole speed range. Meanwhile, the structural clearance will increase the shimmy frequency of the nose landing gear. By analysing the yaw angle of the nose landing gear and the time domain curve of the yaw angle of the yaw damper, we can determine which structure of the landing gear and which type of clearance is the cause of the yaw. Finally, the coupling effect caused by the main structural parameters of the landing gear in “gap shimmy” was analysed according to different mechanical stability distances and strut stiffness of the nose landing gear, providing reference for aircraft anti-shimmy design, nose landing gear fault diagnosis and nose landing gear maintenance support.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2022.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2022.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of clearance and structural coupling parameters on shimmy stability of landing gear
There are many factors causing the shimmy of the aircraft landing gear and structural clearance of landing gear is a typical factor. Some aircraft in service or operation did not shimmy before, but suddenly appeared after a period of use. To solve the problem of clearance shimmy during the service of a certain aircraft, we established a dynamic model of rotating gear with clearance based on the flexible multi-body dynamics model of landing gear and L-N contact theory. We defined different types of clearance and established a mechanical model of aircraft pendulum vibration considering the clearance of landing gear structure for dynamic simulation, and studied the effects of different clearance types, clearance size of motion pair and different clearance positions on the stability of pendulum. The results show that the axial clearance has little effect on the shimmy performance of landing gear; the radial clearance has a certain effect on the shimmy performance of medium speed running, which slightly improves the shimmy damping required by medium speed running; the rotational clearance affects the shimmy performance of the nose landing gear by affecting the force transmission of structural components. The required shimmy damping coefficient increases at low speed and decreases at high speed. The main reason for the return clearance is that during the return, the shimmy damper does not work, which leads to the decrease of the shimmy damping performance and the increase of the required shimmy damping coefficient in the whole speed range. Meanwhile, the structural clearance will increase the shimmy frequency of the nose landing gear. By analysing the yaw angle of the nose landing gear and the time domain curve of the yaw angle of the yaw damper, we can determine which structure of the landing gear and which type of clearance is the cause of the yaw. Finally, the coupling effect caused by the main structural parameters of the landing gear in “gap shimmy” was analysed according to different mechanical stability distances and strut stiffness of the nose landing gear, providing reference for aircraft anti-shimmy design, nose landing gear fault diagnosis and nose landing gear maintenance support.