{"title":"基于自适应神经模糊推理系统(ANFIS)的双轴太阳跟踪系统控制器分析","authors":"S. Z. Mohammad Noor","doi":"10.24191/jmeche.v20i2.22061","DOIUrl":null,"url":null,"abstract":"Artificial intelligence is commonly used in Photovoltaic (PV) control systems. Adaptive Neural Fuzzy Inference System (ANFIS) is one of the intelligent strategies that can be employed in the system controller. ANFIS technique shows high accuracy as it involved several processes which are the Fuzzy layer, Fuzzy Rule layer, Normalization layer, and Output Membership layer. The main objective of the proposed work is to model the dual-axis solar tracker using MATLAB software by utilizing the ANFIS technique, hence improving the performance of the solar system. The data used for training and testing are elevation angle and azimuth angle. 80% of the data is used for training and another 20% for testing in order to predict the solar radiation toward PV panels. A different set of input membership functions (MFs) is used in the system, which are Five MFs, Ten MFs, and Fifteen MFs. These MF are simulated to produce the best prediction of solar radiation. The results showaverage error gained for both training and testing data and minimum error indicates the accuracy of the predicted angle of dual axis solar tracker. In the finding, overall results show a good correlation between the actual and prediction value with 15 input MFs as it produced the lowest error value.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"354 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Analysis of Dual Axis Solar Tracking System Controllers Based on Adaptive Neural Fuzzy Inference System (ANFIS)\",\"authors\":\"S. Z. Mohammad Noor\",\"doi\":\"10.24191/jmeche.v20i2.22061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence is commonly used in Photovoltaic (PV) control systems. Adaptive Neural Fuzzy Inference System (ANFIS) is one of the intelligent strategies that can be employed in the system controller. ANFIS technique shows high accuracy as it involved several processes which are the Fuzzy layer, Fuzzy Rule layer, Normalization layer, and Output Membership layer. The main objective of the proposed work is to model the dual-axis solar tracker using MATLAB software by utilizing the ANFIS technique, hence improving the performance of the solar system. The data used for training and testing are elevation angle and azimuth angle. 80% of the data is used for training and another 20% for testing in order to predict the solar radiation toward PV panels. A different set of input membership functions (MFs) is used in the system, which are Five MFs, Ten MFs, and Fifteen MFs. These MF are simulated to produce the best prediction of solar radiation. The results showaverage error gained for both training and testing data and minimum error indicates the accuracy of the predicted angle of dual axis solar tracker. In the finding, overall results show a good correlation between the actual and prediction value with 15 input MFs as it produced the lowest error value.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"354 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i2.22061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The Analysis of Dual Axis Solar Tracking System Controllers Based on Adaptive Neural Fuzzy Inference System (ANFIS)
Artificial intelligence is commonly used in Photovoltaic (PV) control systems. Adaptive Neural Fuzzy Inference System (ANFIS) is one of the intelligent strategies that can be employed in the system controller. ANFIS technique shows high accuracy as it involved several processes which are the Fuzzy layer, Fuzzy Rule layer, Normalization layer, and Output Membership layer. The main objective of the proposed work is to model the dual-axis solar tracker using MATLAB software by utilizing the ANFIS technique, hence improving the performance of the solar system. The data used for training and testing are elevation angle and azimuth angle. 80% of the data is used for training and another 20% for testing in order to predict the solar radiation toward PV panels. A different set of input membership functions (MFs) is used in the system, which are Five MFs, Ten MFs, and Fifteen MFs. These MF are simulated to produce the best prediction of solar radiation. The results showaverage error gained for both training and testing data and minimum error indicates the accuracy of the predicted angle of dual axis solar tracker. In the finding, overall results show a good correlation between the actual and prediction value with 15 input MFs as it produced the lowest error value.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.