具有多响应位的基于忆阻器的仲裁器物理不可克隆功能

Julius Teo Han Loong, Noor Alia Nor Hashim, F. A. Hamid
{"title":"具有多响应位的基于忆阻器的仲裁器物理不可克隆功能","authors":"Julius Teo Han Loong, Noor Alia Nor Hashim, F. A. Hamid","doi":"10.1109/SCORED.2016.7810033","DOIUrl":null,"url":null,"abstract":"The memristor, short for memory resistor, is the fourth fundamental passive circuit element, whereby it can remember the resistance based on the last applied voltage. The memristor is used in the Physically Unclonable Function (PUF), which has potential for hardware security. To improve the performance of the memristor-based arbiter PUF, two modifications were made on the design, which are extracting multiple response bits from various stages in the delay paths in order to increase resistance against attacks, and using the SR latch rather than the D flip-flop as the arbiter because of better input-to-output path symmetry in the SR latch to minimize repsonse bias as well as circuit size and overhead. The proposed memristor-based APUF were simulated with two, three, and four memristors per stage. The memristor-based APUF performance were analyzed in terms of uniqueness, uniformity, and bit-aliasing, where the average values obtained were 49.32%, 53.21%, and 53.21%, respectively. The proposed memristor-based APUF performs well as expected.","PeriodicalId":6865,"journal":{"name":"2016 IEEE Student Conference on Research and Development (SCOReD)","volume":"154 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Memristor-based arbiter Physically Unclonable Function (APUF) with multiple response bits\",\"authors\":\"Julius Teo Han Loong, Noor Alia Nor Hashim, F. A. Hamid\",\"doi\":\"10.1109/SCORED.2016.7810033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The memristor, short for memory resistor, is the fourth fundamental passive circuit element, whereby it can remember the resistance based on the last applied voltage. The memristor is used in the Physically Unclonable Function (PUF), which has potential for hardware security. To improve the performance of the memristor-based arbiter PUF, two modifications were made on the design, which are extracting multiple response bits from various stages in the delay paths in order to increase resistance against attacks, and using the SR latch rather than the D flip-flop as the arbiter because of better input-to-output path symmetry in the SR latch to minimize repsonse bias as well as circuit size and overhead. The proposed memristor-based APUF were simulated with two, three, and four memristors per stage. The memristor-based APUF performance were analyzed in terms of uniqueness, uniformity, and bit-aliasing, where the average values obtained were 49.32%, 53.21%, and 53.21%, respectively. The proposed memristor-based APUF performs well as expected.\",\"PeriodicalId\":6865,\"journal\":{\"name\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"154 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2016.7810033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2016.7810033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

忆阻器是记忆电阻器的简称,是第四种基本无源电路元件,它可以根据最后施加的电压记住电阻。忆阻器用于物理不可克隆功能(PUF),具有硬件安全的潜力。为了提高基于忆阻器的仲裁器PUF的性能,对设计进行了两项修改,即从延迟路径的各个阶段提取多个响应位以增加抵抗攻击的能力,并且使用SR锁存器而不是D触发器作为仲裁器,因为SR锁存器的输入输出路径对称性更好,可以最大限度地减少响应偏置以及电路尺寸和开销。所提出的基于忆阻器的APUF每级分别用2个、3个和4个忆阻器进行仿真。从唯一性、均匀性和位混叠三个方面分析了基于忆阻器的APUF性能,得到的平均值分别为49.32%、53.21%和53.21%。所提出的基于忆阻器的APUF性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Memristor-based arbiter Physically Unclonable Function (APUF) with multiple response bits
The memristor, short for memory resistor, is the fourth fundamental passive circuit element, whereby it can remember the resistance based on the last applied voltage. The memristor is used in the Physically Unclonable Function (PUF), which has potential for hardware security. To improve the performance of the memristor-based arbiter PUF, two modifications were made on the design, which are extracting multiple response bits from various stages in the delay paths in order to increase resistance against attacks, and using the SR latch rather than the D flip-flop as the arbiter because of better input-to-output path symmetry in the SR latch to minimize repsonse bias as well as circuit size and overhead. The proposed memristor-based APUF were simulated with two, three, and four memristors per stage. The memristor-based APUF performance were analyzed in terms of uniqueness, uniformity, and bit-aliasing, where the average values obtained were 49.32%, 53.21%, and 53.21%, respectively. The proposed memristor-based APUF performs well as expected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pedestrian detection and tracking with boosted HOG classifiers and Kalman filter Advanced inter-cell interference management technologies in 5G wireless Heterogeneous Networks (HetNets) Intelligent automatic starting engine based on voice recognition system Development of algorithm to characterize flavonoids classes Effect of substrates temperature on structural and optical properties indium tin oxide prepared by RF magnetron sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1