Helios:带有卫星内核的异构多处理

Edmund B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, G. Hunt
{"title":"Helios:带有卫星内核的异构多处理","authors":"Edmund B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, G. Hunt","doi":"10.1145/1629575.1629597","DOIUrl":null,"url":null,"abstract":"Helios is an operating system designed to simplify the task of writing, deploying, and tuning applications for heterogeneous platforms. Helios introduces satellite kernels, which export a single, uniform set of OS abstractions across CPUs of disparate architectures and performance characteristics. Access to I/O services such as file systems are made transparent via remote message passing, which extends a standard microkernel message-passing abstraction to a satellite kernel infrastructure. Helios retargets applications to available ISAs by compiling from an intermediate language. To simplify deploying and tuning application performance, Helios exposes an affinity metric to developers. Affinity provides a hint to the operating system about whether a process would benefit from executing on the same platform as a service it depends upon.\n We developed satellite kernels for an XScale programmable I/O card and for cache-coherent NUMA architectures. We offloaded several applications and operating system components, often by changing only a single line of metadata. We show up to a 28% performance improvement by offloading tasks to the XScale I/O card. On a mail-server benchmark, we show a 39% improvement in performance by automatically splitting the application among multiple NUMA domains.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"138 1","pages":"221-234"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"230","resultStr":"{\"title\":\"Helios: heterogeneous multiprocessing with satellite kernels\",\"authors\":\"Edmund B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, G. Hunt\",\"doi\":\"10.1145/1629575.1629597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helios is an operating system designed to simplify the task of writing, deploying, and tuning applications for heterogeneous platforms. Helios introduces satellite kernels, which export a single, uniform set of OS abstractions across CPUs of disparate architectures and performance characteristics. Access to I/O services such as file systems are made transparent via remote message passing, which extends a standard microkernel message-passing abstraction to a satellite kernel infrastructure. Helios retargets applications to available ISAs by compiling from an intermediate language. To simplify deploying and tuning application performance, Helios exposes an affinity metric to developers. Affinity provides a hint to the operating system about whether a process would benefit from executing on the same platform as a service it depends upon.\\n We developed satellite kernels for an XScale programmable I/O card and for cache-coherent NUMA architectures. We offloaded several applications and operating system components, often by changing only a single line of metadata. We show up to a 28% performance improvement by offloading tasks to the XScale I/O card. On a mail-server benchmark, we show a 39% improvement in performance by automatically splitting the application among multiple NUMA domains.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"138 1\",\"pages\":\"221-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"230\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629575.1629597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629575.1629597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 230

摘要

Helios是一个操作系统,旨在简化针对异构平台编写、部署和调优应用程序的任务。Helios引入了卫星内核,它跨不同架构和性能特征的cpu导出一组统一的操作系统抽象。通过远程消息传递使对文件系统等I/O服务的访问变得透明,远程消息传递将标准的微内核消息传递抽象扩展到卫星内核基础结构。Helios通过编译中间语言将应用程序重新定位到可用的isa。为了简化应用程序性能的部署和调优,Helios向开发人员公开了一个关联度量。亲和性向操作系统提供了一个提示,告诉它一个进程是否会从作为它所依赖的服务在同一平台上执行中获益。我们为XScale可编程I/O卡和缓存一致的NUMA架构开发了卫星内核。我们卸载了几个应用程序和操作系统组件,通常只更改了一行元数据。通过将任务卸载到XScale I/O卡,我们的性能提高了28%。在邮件服务器基准测试中,通过在多个NUMA域中自动拆分应用程序,我们显示性能提高了39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Helios: heterogeneous multiprocessing with satellite kernels
Helios is an operating system designed to simplify the task of writing, deploying, and tuning applications for heterogeneous platforms. Helios introduces satellite kernels, which export a single, uniform set of OS abstractions across CPUs of disparate architectures and performance characteristics. Access to I/O services such as file systems are made transparent via remote message passing, which extends a standard microkernel message-passing abstraction to a satellite kernel infrastructure. Helios retargets applications to available ISAs by compiling from an intermediate language. To simplify deploying and tuning application performance, Helios exposes an affinity metric to developers. Affinity provides a hint to the operating system about whether a process would benefit from executing on the same platform as a service it depends upon. We developed satellite kernels for an XScale programmable I/O card and for cache-coherent NUMA architectures. We offloaded several applications and operating system components, often by changing only a single line of metadata. We show up to a 28% performance improvement by offloading tasks to the XScale I/O card. On a mail-server benchmark, we show a 39% improvement in performance by automatically splitting the application among multiple NUMA domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ResilientFL '21: Proceedings of the First Workshop on Systems Challenges in Reliable and Secure Federated Learning, Virtual Event / Koblenz, Germany, 25 October 2021 SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021 Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Efficient deterministic multithreading through schedule relaxation SILT: a memory-efficient, high-performance key-value store
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1