{"title":"低分辨率电磁断层成像技术在脑电图脑成像中的应用研究","authors":"G. Tejay, Zareef A. Mohammed","doi":"10.1145/3583581.3583586","DOIUrl":null,"url":null,"abstract":"NeuroIS presents a new opportunity for information systems research. Often used neuroscience techniques include brain mapping with the functional magnetic resonance imaging (fMRI) device or eventrelated potential time-domain studies with the electroencephalogram (EEG). The critics of EEG consider the poor spatial resolution as justification for EEG's inadequacy to brain mapping studies. However, the low-resolution electromagnetic tomography (LORETA) technique provides strong estimation parameters allowing EEG to perform brain mapping. This paper presents EEG (with lower number of channels) and LORETA techniques as an effective approach for exploratory investigation specially when researchers are constrained with lack of resources (specially at significantly lower costs). We demonstrate the effectiveness of EEG using sLORETA with respect to fMRI as proof-of-concept approach to study IS phenomenon. The results of such studies can serve as a preliminary step for further analysis with the use of more sophisticated neuroscience devices. This can enhance IS research by taking advantage of both high temporal and spatial resolution leading to reduced estimation errors of neural activity and stronger basis for correlating neural activity and specific tasks. We also present a set of guidelines for using the LORETA family of techniques in IS research.","PeriodicalId":46842,"journal":{"name":"Data Base for Advances in Information Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examining the Low- Resolution Electromagnetic Tomography Technique for EEG Brain Mapping\",\"authors\":\"G. Tejay, Zareef A. Mohammed\",\"doi\":\"10.1145/3583581.3583586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NeuroIS presents a new opportunity for information systems research. Often used neuroscience techniques include brain mapping with the functional magnetic resonance imaging (fMRI) device or eventrelated potential time-domain studies with the electroencephalogram (EEG). The critics of EEG consider the poor spatial resolution as justification for EEG's inadequacy to brain mapping studies. However, the low-resolution electromagnetic tomography (LORETA) technique provides strong estimation parameters allowing EEG to perform brain mapping. This paper presents EEG (with lower number of channels) and LORETA techniques as an effective approach for exploratory investigation specially when researchers are constrained with lack of resources (specially at significantly lower costs). We demonstrate the effectiveness of EEG using sLORETA with respect to fMRI as proof-of-concept approach to study IS phenomenon. The results of such studies can serve as a preliminary step for further analysis with the use of more sophisticated neuroscience devices. This can enhance IS research by taking advantage of both high temporal and spatial resolution leading to reduced estimation errors of neural activity and stronger basis for correlating neural activity and specific tasks. We also present a set of guidelines for using the LORETA family of techniques in IS research.\",\"PeriodicalId\":46842,\"journal\":{\"name\":\"Data Base for Advances in Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Base for Advances in Information Systems\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1145/3583581.3583586\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Base for Advances in Information Systems","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1145/3583581.3583586","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Examining the Low- Resolution Electromagnetic Tomography Technique for EEG Brain Mapping
NeuroIS presents a new opportunity for information systems research. Often used neuroscience techniques include brain mapping with the functional magnetic resonance imaging (fMRI) device or eventrelated potential time-domain studies with the electroencephalogram (EEG). The critics of EEG consider the poor spatial resolution as justification for EEG's inadequacy to brain mapping studies. However, the low-resolution electromagnetic tomography (LORETA) technique provides strong estimation parameters allowing EEG to perform brain mapping. This paper presents EEG (with lower number of channels) and LORETA techniques as an effective approach for exploratory investigation specially when researchers are constrained with lack of resources (specially at significantly lower costs). We demonstrate the effectiveness of EEG using sLORETA with respect to fMRI as proof-of-concept approach to study IS phenomenon. The results of such studies can serve as a preliminary step for further analysis with the use of more sophisticated neuroscience devices. This can enhance IS research by taking advantage of both high temporal and spatial resolution leading to reduced estimation errors of neural activity and stronger basis for correlating neural activity and specific tasks. We also present a set of guidelines for using the LORETA family of techniques in IS research.