电催化与多相催化的对比与协同作用

A. Wiȩckowski, M. Neurock
{"title":"电催化与多相催化的对比与协同作用","authors":"A. Wiȩckowski, M. Neurock","doi":"10.1155/2011/907129","DOIUrl":null,"url":null,"abstract":"The advances in spectroscopy and theory that have occurred over the past two decades begin to provide detailed in situ resolution of the molecular transformations that occur at both gas/metal as well as aqueous/metal interfaces. These advances begin to allow for a more direct comparison of heterogeneous catalysis and electrocatalysis. Such comparisons become important, as many of the current energy conversion strategies involve catalytic and electrocatalytic processes that occur at fluid/solid interfaces and display very similar characteristics. Herein, we compare and contrast a few different catalytic and electrocatalytic systems to elucidate the principles that cross-cut both areas and establish characteristic differences between the two with the hope of advancing both areas.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Contrast and Synergy between Electrocatalysis and Heterogeneous Catalysis\",\"authors\":\"A. Wiȩckowski, M. Neurock\",\"doi\":\"10.1155/2011/907129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advances in spectroscopy and theory that have occurred over the past two decades begin to provide detailed in situ resolution of the molecular transformations that occur at both gas/metal as well as aqueous/metal interfaces. These advances begin to allow for a more direct comparison of heterogeneous catalysis and electrocatalysis. Such comparisons become important, as many of the current energy conversion strategies involve catalytic and electrocatalytic processes that occur at fluid/solid interfaces and display very similar characteristics. Herein, we compare and contrast a few different catalytic and electrocatalytic systems to elucidate the principles that cross-cut both areas and establish characteristic differences between the two with the hope of advancing both areas.\",\"PeriodicalId\":7371,\"journal\":{\"name\":\"Advances in Physical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/907129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/907129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在过去的二十年里,光谱学和理论的进步开始提供在气体/金属以及水/金属界面发生的分子转化的详细的原位分辨率。这些进展开始允许更直接地比较多相催化和电催化。这种比较变得非常重要,因为目前的许多能量转换策略都涉及发生在流体/固体界面的催化和电催化过程,并且表现出非常相似的特征。在此,我们比较和对比了几种不同的催化和电催化系统,以阐明交叉这两个领域的原理,并建立两者之间的特征差异,以期推动这两个领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrast and Synergy between Electrocatalysis and Heterogeneous Catalysis
The advances in spectroscopy and theory that have occurred over the past two decades begin to provide detailed in situ resolution of the molecular transformations that occur at both gas/metal as well as aqueous/metal interfaces. These advances begin to allow for a more direct comparison of heterogeneous catalysis and electrocatalysis. Such comparisons become important, as many of the current energy conversion strategies involve catalytic and electrocatalytic processes that occur at fluid/solid interfaces and display very similar characteristics. Herein, we compare and contrast a few different catalytic and electrocatalytic systems to elucidate the principles that cross-cut both areas and establish characteristic differences between the two with the hope of advancing both areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation Enhancement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Porphyrin Precursor Organic Compounds Based on (E)-N-Aryl-2-ethene-sulfonamide as Microtubule Targeted Agents in Prostate Cancer: QSAR Study Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition Synthesis and Characterization of System In(O,OH)S/i-ZnO/n+-ZnO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1