一种基于无监督端到端框架的高动态图像融合方法

Xinglin Hou;Jiayi Yan;Tao Sun;Huannan Qi;Wen Sun
{"title":"一种基于无监督端到端框架的高动态图像融合方法","authors":"Xinglin Hou;Jiayi Yan;Tao Sun;Huannan Qi;Wen Sun","doi":"10.1109/JMASS.2023.3305241","DOIUrl":null,"url":null,"abstract":"For the sake of high-quality images of the high dynamic range (HDR) scenes, it is effective means to fuse the multiexposure sequences for the same HDR scene. However, the fused images using the existing fusion methods are prone to detail loss or block effect. Aiming at these problems, a novel unsupervised end-to-end framework is developed to provide solutions for the multiexposure image fusion. Instead of conventional manual setting, the optimal image weight coefficients of the multiexposure images are learned automatically, which makes this model more suitable for application. Most importantly, a customized loss function is designed to enhance the network achievement and automatically learn the parameters in the direction of optimal fusion image. According to the quantitative and qualitative results of a large number of experiments, it is demonstrated that the proposed framework performs its superiority and effectiveness compared with the state-of-the-art approaches.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 4","pages":"400-407"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel High Dynamic Image Fusion Method via an Unsupervised End-to-End Framework\",\"authors\":\"Xinglin Hou;Jiayi Yan;Tao Sun;Huannan Qi;Wen Sun\",\"doi\":\"10.1109/JMASS.2023.3305241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the sake of high-quality images of the high dynamic range (HDR) scenes, it is effective means to fuse the multiexposure sequences for the same HDR scene. However, the fused images using the existing fusion methods are prone to detail loss or block effect. Aiming at these problems, a novel unsupervised end-to-end framework is developed to provide solutions for the multiexposure image fusion. Instead of conventional manual setting, the optimal image weight coefficients of the multiexposure images are learned automatically, which makes this model more suitable for application. Most importantly, a customized loss function is designed to enhance the network achievement and automatically learn the parameters in the direction of optimal fusion image. According to the quantitative and qualitative results of a large number of experiments, it is demonstrated that the proposed framework performs its superiority and effectiveness compared with the state-of-the-art approaches.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"4 4\",\"pages\":\"400-407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10216941/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10216941/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了获得高动态范围(HDR)场景的高质量图像,对同一HDR场景进行多曝光序列融合是一种有效手段。然而,现有的融合方法所得到的融合图像容易出现细节丢失或块效应。针对这些问题,提出了一种新的端到端无监督框架,为多曝光图像融合提供了解决方案。该模型代替了传统的手动设置,自动学习了多次曝光图像的最优权重系数,使其更适合应用。最重要的是,设计了自定义的损失函数来增强网络效果,并自动学习最优融合图像方向的参数。大量的定量和定性实验结果表明,与现有的方法相比,该框架具有优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel High Dynamic Image Fusion Method via an Unsupervised End-to-End Framework
For the sake of high-quality images of the high dynamic range (HDR) scenes, it is effective means to fuse the multiexposure sequences for the same HDR scene. However, the fused images using the existing fusion methods are prone to detail loss or block effect. Aiming at these problems, a novel unsupervised end-to-end framework is developed to provide solutions for the multiexposure image fusion. Instead of conventional manual setting, the optimal image weight coefficients of the multiexposure images are learned automatically, which makes this model more suitable for application. Most importantly, a customized loss function is designed to enhance the network achievement and automatically learn the parameters in the direction of optimal fusion image. According to the quantitative and qualitative results of a large number of experiments, it is demonstrated that the proposed framework performs its superiority and effectiveness compared with the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1