三十年来斑马和斑驴贻贝入侵的遗传轨迹:伊利湖与哈德逊河种群

IF 2.2 3区 环境科学与生态学 Q2 ECOLOGY Aquatic Invasions Pub Date : 2021-01-01 DOI:10.3391/AI.2021.16.1.10
N. Marshall, Carol A. Stepien
{"title":"三十年来斑马和斑驴贻贝入侵的遗传轨迹:伊利湖与哈德逊河种群","authors":"N. Marshall, Carol A. Stepien","doi":"10.3391/AI.2021.16.1.10","DOIUrl":null,"url":null,"abstract":"Genetic compositions and comparative diversity of zebra (Dreissena polymorpha) and quagga (D. rostriformis) mussel populations are compared across their three decade-long histories as invasive species in the Hudson River and Lake Erie of North America. We analyze 15 nuclear DNA microsatellite loci for the zebra mussel and 10 for the quagga mussel. Results indicate that the Hudson River and Lake Erie zebra mussel populations slightly diverge in genetic compositions, and possess similar overall genetic diversity levels. The allelic composition of the Hudson River zebra mussel population significantly changed during the middle time period (2003) analyzed, suggesting genetic replacement. Yet, its overall levels of genetic diversity levels have stayed similar. In contrast, the Hudson River’s quagga mussel population has remained genetically consistent over time in both composition and diversity. Lake Erie’s zebra mussel population underwent slight change in allelic composition and increased in genetic diversity from the earliest timepoint, suggesting allelic supplementation from newly arriving propagules. In contrast, Lake Erie’s quagga mussel population has remained genetically consistent over time. The genetic composition of Lake Erie zebra mussel veliger larvae sampled in 2016 differed from its adult samples, attributable to gene flow from other areas and genetic admixture. Overall findings indicate that invasive populations may undergo significant genetic divergence or remain consistent over time, whose patterns may differ across their ranges and between related species. The population dynamics underlying their invasional successes thus may be complex.","PeriodicalId":8119,"journal":{"name":"Aquatic Invasions","volume":"149 1","pages":"147-166"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Genetic trajectories of zebra and quagga mussel invasions across three decades: Lake Erie versus Hudson River populations\",\"authors\":\"N. Marshall, Carol A. Stepien\",\"doi\":\"10.3391/AI.2021.16.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic compositions and comparative diversity of zebra (Dreissena polymorpha) and quagga (D. rostriformis) mussel populations are compared across their three decade-long histories as invasive species in the Hudson River and Lake Erie of North America. We analyze 15 nuclear DNA microsatellite loci for the zebra mussel and 10 for the quagga mussel. Results indicate that the Hudson River and Lake Erie zebra mussel populations slightly diverge in genetic compositions, and possess similar overall genetic diversity levels. The allelic composition of the Hudson River zebra mussel population significantly changed during the middle time period (2003) analyzed, suggesting genetic replacement. Yet, its overall levels of genetic diversity levels have stayed similar. In contrast, the Hudson River’s quagga mussel population has remained genetically consistent over time in both composition and diversity. Lake Erie’s zebra mussel population underwent slight change in allelic composition and increased in genetic diversity from the earliest timepoint, suggesting allelic supplementation from newly arriving propagules. In contrast, Lake Erie’s quagga mussel population has remained genetically consistent over time. The genetic composition of Lake Erie zebra mussel veliger larvae sampled in 2016 differed from its adult samples, attributable to gene flow from other areas and genetic admixture. Overall findings indicate that invasive populations may undergo significant genetic divergence or remain consistent over time, whose patterns may differ across their ranges and between related species. The population dynamics underlying their invasional successes thus may be complex.\",\"PeriodicalId\":8119,\"journal\":{\"name\":\"Aquatic Invasions\",\"volume\":\"149 1\",\"pages\":\"147-166\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Invasions\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3391/AI.2021.16.1.10\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Invasions","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3391/AI.2021.16.1.10","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

对北美哈德逊河和伊利湖三十年来作为入侵物种的斑马(Dreissena polymorpha)和斑驴(D. rostriformis)贻贝种群的遗传组成和比较多样性进行了比较。我们分析了斑马贻贝的15个核DNA微卫星位点和斑马贝的10个核DNA微卫星位点。结果表明,哈德逊河和伊利湖斑马贻贝种群在遗传组成上略有差异,但总体遗传多样性水平相似。哈德逊河斑马贻贝种群的等位基因组成在中期(2003年)发生了显著变化,表明存在遗传替代。然而,它的总体遗传多样性水平保持相似。相比之下,哈德逊河的斑驴贻贝种群在组成和多样性方面一直保持着遗传上的一致性。从最早的时间点开始,伊利湖斑马贻贝种群的等位基因组成发生了轻微的变化,遗传多样性有所增加,这表明等位基因补充来自新到达的繁殖体。相比之下,伊利湖的斑驴贻贝种群在基因上一直保持一致。2016年伊利湖斑马贻贝幼虫的遗传组成与成虫不同,主要原因是来自其他地区的基因流动和遗传混合。总体研究结果表明,入侵种群可能经历显著的遗传分化或随着时间的推移保持一致,其模式可能在其范围和相关物种之间有所不同。因此,它们成功入侵背后的种群动态可能是复杂的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic trajectories of zebra and quagga mussel invasions across three decades: Lake Erie versus Hudson River populations
Genetic compositions and comparative diversity of zebra (Dreissena polymorpha) and quagga (D. rostriformis) mussel populations are compared across their three decade-long histories as invasive species in the Hudson River and Lake Erie of North America. We analyze 15 nuclear DNA microsatellite loci for the zebra mussel and 10 for the quagga mussel. Results indicate that the Hudson River and Lake Erie zebra mussel populations slightly diverge in genetic compositions, and possess similar overall genetic diversity levels. The allelic composition of the Hudson River zebra mussel population significantly changed during the middle time period (2003) analyzed, suggesting genetic replacement. Yet, its overall levels of genetic diversity levels have stayed similar. In contrast, the Hudson River’s quagga mussel population has remained genetically consistent over time in both composition and diversity. Lake Erie’s zebra mussel population underwent slight change in allelic composition and increased in genetic diversity from the earliest timepoint, suggesting allelic supplementation from newly arriving propagules. In contrast, Lake Erie’s quagga mussel population has remained genetically consistent over time. The genetic composition of Lake Erie zebra mussel veliger larvae sampled in 2016 differed from its adult samples, attributable to gene flow from other areas and genetic admixture. Overall findings indicate that invasive populations may undergo significant genetic divergence or remain consistent over time, whose patterns may differ across their ranges and between related species. The population dynamics underlying their invasional successes thus may be complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Invasions
Aquatic Invasions ECOLOGY-MARINE & FRESHWATER BIOLOGY
CiteScore
4.30
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Aquatic Invasions is an open access, peer-reviewed international journal focusing on academic research of biological invasions in both inland and coastal water ecosystems from around the world. It was established in 2006 as initiative of the International Society of Limnology (SIL) Working Group on Aquatic Invasive Species (WGAIS) with start-up funding from the European Commission Sixth Framework Programme for Research and Technological Development Integrated Project ALARM. Aquatic Invasions is an official journal of International Association for Open Knowledge on Invasive Alien Species (INVASIVESNET). Aquatic Invasions provides a forum for professionals involved in research of aquatic non-native species, including a focus on the following: • Patterns of non-native species dispersal, including range extensions with global change • Trends in new introductions and establishment of non-native species • Population dynamics of non-native species • Ecological and evolutionary impacts of non-native species • Behaviour of invasive and associated native species in invaded areas • Prediction of new invasions • Advances in non-native species identification and taxonomy
期刊最新文献
Horizon scanning for potentially invasive non-native marine species to inform trans-boundary conservation management – Example of the northern Gulf of Mexico Models based on chronological data correctly predict the spread of freshwater aliens, and reveal a strong influence of river access, anthropogenic activities and climate regimes Dietary habits change of Lessepsian migrants’ fish from the Red Sea to the Eastern Mediterranean Sea Size-dependent functional response of the round goby Neogobius melanostomus; implications for more accurate impact potential calculation Early stage of invasion of the quagga mussel (Dreissena rostriformis bugensis) within the interconnected lakes Lough Ree and Lough Derg of the Shannon River system, Ireland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1