电动汽车电池选择标准:技术经济分析

Alaattin Yücenurşen, A. Samancı
{"title":"电动汽车电池选择标准:技术经济分析","authors":"Alaattin Yücenurşen, A. Samancı","doi":"10.18245/ijaet.1216888","DOIUrl":null,"url":null,"abstract":"In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In the analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it was seen that the cheapest technology for a 10-year lifespan was lead-acid technology. It has been determined that lead-acid technology is 30% cheaper than the second cheapest gel technology and 82% cheaper than the most expensive technology, LiPo technology. In the study, it was revealed that the lightest technology was LiPo. It has been determined that this technology is 85% lighter than gel technology. Besides this information, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery selection criteria for electric vehicles: techno-economic analysis\",\"authors\":\"Alaattin Yücenurşen, A. Samancı\",\"doi\":\"10.18245/ijaet.1216888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In the analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it was seen that the cheapest technology for a 10-year lifespan was lead-acid technology. It has been determined that lead-acid technology is 30% cheaper than the second cheapest gel technology and 82% cheaper than the most expensive technology, LiPo technology. In the study, it was revealed that the lightest technology was LiPo. It has been determined that this technology is 85% lighter than gel technology. Besides this information, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/ijaet.1216888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/ijaet.1216888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,分析了将小型轻型(600-1000公斤)内燃机汽车转换为电动汽车所使用的不同电池类型。进行这项研究是为了确保这种车辆适合城市使用,行驶里程约为100公里。每种电池技术的容量被评估为大约15千瓦时。在对不同类型的电池进行技术经济分析时,考虑到它们可以提供大约10年的必要能量。采用铅酸、凝胶、Ni-Cd、Li-Ion、LiFePo4、LiPo、Ni-MH等7种不同的电池技术进行比较。在分析中;表中列出了以美元计算的价格评估、10年投资成本、重量和体积值、生产1千瓦时能源所需的重量和体积值。除此之外,还对电池寿命进行了评估。最后,比较了各种电池技术的优缺点。研究结果表明,在10年的使用寿命中,最便宜的技术是铅酸技术。已经确定,铅酸技术比第二便宜的凝胶技术便宜30%,比最昂贵的LiPo技术便宜82%。在研究中,发现最轻的技术是LiPo。经测定,该技术比凝胶技术轻85%。除此之外,循环寿命、自放电、优缺点等数据以表格形式呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Battery selection criteria for electric vehicles: techno-economic analysis
In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In the analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it was seen that the cheapest technology for a 10-year lifespan was lead-acid technology. It has been determined that lead-acid technology is 30% cheaper than the second cheapest gel technology and 82% cheaper than the most expensive technology, LiPo technology. In the study, it was revealed that the lightest technology was LiPo. It has been determined that this technology is 85% lighter than gel technology. Besides this information, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler Experimental evaluation of gasoline-hexane fuel blends usage in a spark ignition engine Suspension system design for pedal-assisted cargo E-quadricycle Reducing fuel consumption of a light-duty vehicle by incorporating CuO nanoparticles in compressor lubricant of air-conditioning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1