扫描激光雷达点云的语义分割

Maria Axelsson, M. Holmberg, M. Tulldahl
{"title":"扫描激光雷达点云的语义分割","authors":"Maria Axelsson, M. Holmberg, M. Tulldahl","doi":"10.1117/12.2645181","DOIUrl":null,"url":null,"abstract":"A point cloud can provide a detailed three dimensional (3D) description of a scene. Partitioning of a point cloud into semantic classes is important for scene understanding, which can be used in autonomous navigation for unmanned vehicles and in applications including surveillance, mapping, and reconnaissance. In this paper, we give a review of recent machine learning techniques for semantic segmentation of point clouds from scanning lidars and an overview of model compression techniques. We focus especially on scan-based learning approaches, which operate on single sensor sweeps. These methods do not require data registration and are suitable for real-time applications. We demonstrate how these semantic segmentation techniques can be used in defence applications in surveillance or mapping scenarios with a scanning lidar mounted on a small UAV.","PeriodicalId":52940,"journal":{"name":"Security and Defence Quarterly","volume":"149 1","pages":"1227206 - 1227206-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic segmentation of point clouds from scanning lidars\",\"authors\":\"Maria Axelsson, M. Holmberg, M. Tulldahl\",\"doi\":\"10.1117/12.2645181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A point cloud can provide a detailed three dimensional (3D) description of a scene. Partitioning of a point cloud into semantic classes is important for scene understanding, which can be used in autonomous navigation for unmanned vehicles and in applications including surveillance, mapping, and reconnaissance. In this paper, we give a review of recent machine learning techniques for semantic segmentation of point clouds from scanning lidars and an overview of model compression techniques. We focus especially on scan-based learning approaches, which operate on single sensor sweeps. These methods do not require data registration and are suitable for real-time applications. We demonstrate how these semantic segmentation techniques can be used in defence applications in surveillance or mapping scenarios with a scanning lidar mounted on a small UAV.\",\"PeriodicalId\":52940,\"journal\":{\"name\":\"Security and Defence Quarterly\",\"volume\":\"149 1\",\"pages\":\"1227206 - 1227206-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Defence Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2645181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Defence Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2645181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点云可以提供场景的详细三维(3D)描述。将点云划分为语义类对于场景理解非常重要,这可以用于无人驾驶车辆的自主导航以及监视、测绘和侦察等应用。在本文中,我们回顾了最近用于扫描激光雷达点云语义分割的机器学习技术,并概述了模型压缩技术。我们特别关注基于扫描的学习方法,它在单个传感器扫描上运行。这些方法不需要数据注册,适合实时应用。我们演示了这些语义分割技术如何在监视或测绘场景的国防应用中使用安装在小型无人机上的扫描激光雷达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic segmentation of point clouds from scanning lidars
A point cloud can provide a detailed three dimensional (3D) description of a scene. Partitioning of a point cloud into semantic classes is important for scene understanding, which can be used in autonomous navigation for unmanned vehicles and in applications including surveillance, mapping, and reconnaissance. In this paper, we give a review of recent machine learning techniques for semantic segmentation of point clouds from scanning lidars and an overview of model compression techniques. We focus especially on scan-based learning approaches, which operate on single sensor sweeps. These methods do not require data registration and are suitable for real-time applications. We demonstrate how these semantic segmentation techniques can be used in defence applications in surveillance or mapping scenarios with a scanning lidar mounted on a small UAV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
9 weeks
期刊最新文献
Role of the private sector within Latvia’s strategic defence documents: Dimensions of psychological resilience and strategic communication Anti-terrorist cooperation as part of Poland’s geopolitical shift. “Operation Bridge” and the rise of a strategic partnership with the United States The role of military morale as an essential dimension of combat power Gender diversity management in NATO for sustainable security and peace SCADvanceXP—an intelligent Polish system for threat detection and monitoring of industrial networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1