{"title":"Cu-Al-Be形状记忆合金热处理对组织、形状记忆效应和硬度的影响","authors":"J. Al-haidary, A. M. Mustafa, A. A. Hamza","doi":"10.4172/2169-0022.1000398","DOIUrl":null,"url":null,"abstract":"Cu-13Al-0.545Be shape memory alloy are heat treatment at different temperature and time. The microstructure of alloy after heat treatment at 850°C, 650°C and aging at 150°C ,450°C and 550°C for 2, 4 and 6 h study by optical microscope and X-ray diffraction. Bending test is use to show effect of heat treatment on super-elastic and shape memory effect. \nMicro hardness test used to show effect of heat treatment on micro hardness .shape memory effect increase at heat treatment 650°C and aging at 150°C, while at 450°C and 550°C will decrease because precipitate formation rate rises with increase in temperature and time. The hardness and precipitates in the alloy increases with increasing ageing duration. Higher ageing temperature avoids the imperfection by moving and filling the empty space thereby hardens the alloy.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"256 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of Heat Treatment of Cu-Al-Be Shape Memory Alloy on Microstructure, Shape Memory Effect and Hardness\",\"authors\":\"J. Al-haidary, A. M. Mustafa, A. A. Hamza\",\"doi\":\"10.4172/2169-0022.1000398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu-13Al-0.545Be shape memory alloy are heat treatment at different temperature and time. The microstructure of alloy after heat treatment at 850°C, 650°C and aging at 150°C ,450°C and 550°C for 2, 4 and 6 h study by optical microscope and X-ray diffraction. Bending test is use to show effect of heat treatment on super-elastic and shape memory effect. \\nMicro hardness test used to show effect of heat treatment on micro hardness .shape memory effect increase at heat treatment 650°C and aging at 150°C, while at 450°C and 550°C will decrease because precipitate formation rate rises with increase in temperature and time. The hardness and precipitates in the alloy increases with increasing ageing duration. Higher ageing temperature avoids the imperfection by moving and filling the empty space thereby hardens the alloy.\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"256 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0022.1000398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Heat Treatment of Cu-Al-Be Shape Memory Alloy on Microstructure, Shape Memory Effect and Hardness
Cu-13Al-0.545Be shape memory alloy are heat treatment at different temperature and time. The microstructure of alloy after heat treatment at 850°C, 650°C and aging at 150°C ,450°C and 550°C for 2, 4 and 6 h study by optical microscope and X-ray diffraction. Bending test is use to show effect of heat treatment on super-elastic and shape memory effect.
Micro hardness test used to show effect of heat treatment on micro hardness .shape memory effect increase at heat treatment 650°C and aging at 150°C, while at 450°C and 550°C will decrease because precipitate formation rate rises with increase in temperature and time. The hardness and precipitates in the alloy increases with increasing ageing duration. Higher ageing temperature avoids the imperfection by moving and filling the empty space thereby hardens the alloy.