{"title":"一种基于三次插值的三码算法","authors":"Henry A. Boateng , Svetlana Tlupova","doi":"10.1016/j.jcmds.2022.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Treecode algorithms efficiently approximate N-body interactions in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mtext>log</mtext><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. In order to treat general 3D kernels, recent developments employ polynomial interpolation to approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials. Here, we develop an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mtext>log</mtext><mi>N</mi><mo>)</mo></mrow></mrow></math></span> tricubic interpolation based treecode method for 3D kernels. The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor product. The form allows for easy evaluation of the derivatives of the kernel, required in dynamical simulations, which is not the case for the tensor product approach. We develop both a particle-cluster and cluster-particle variants and present results for the Coulomb, screened Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a Lennard-Jones liquid using the tricubic treecode.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000281/pdfft?md5=3c134f39c68f4ef44c46526b17abbfdc&pid=1-s2.0-S2772415822000281-main.pdf","citationCount":"1","resultStr":"{\"title\":\"A treecode algorithm based on tricubic interpolation\",\"authors\":\"Henry A. Boateng , Svetlana Tlupova\",\"doi\":\"10.1016/j.jcmds.2022.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Treecode algorithms efficiently approximate N-body interactions in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mtext>log</mtext><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. In order to treat general 3D kernels, recent developments employ polynomial interpolation to approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials. Here, we develop an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mtext>log</mtext><mi>N</mi><mo>)</mo></mrow></mrow></math></span> tricubic interpolation based treecode method for 3D kernels. The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor product. The form allows for easy evaluation of the derivatives of the kernel, required in dynamical simulations, which is not the case for the tensor product approach. We develop both a particle-cluster and cluster-particle variants and present results for the Coulomb, screened Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a Lennard-Jones liquid using the tricubic treecode.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"5 \",\"pages\":\"Article 100068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000281/pdfft?md5=3c134f39c68f4ef44c46526b17abbfdc&pid=1-s2.0-S2772415822000281-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A treecode algorithm based on tricubic interpolation
Treecode algorithms efficiently approximate N-body interactions in or . In order to treat general 3D kernels, recent developments employ polynomial interpolation to approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials. Here, we develop an tricubic interpolation based treecode method for 3D kernels. The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor product. The form allows for easy evaluation of the derivatives of the kernel, required in dynamical simulations, which is not the case for the tensor product approach. We develop both a particle-cluster and cluster-particle variants and present results for the Coulomb, screened Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a Lennard-Jones liquid using the tricubic treecode.