Leandro Pereira dos Santos, G. E. Vieira, H. V. D. R. Leite, M. T. Steiner
{"title":"逆向生产调度的蚁群优化","authors":"Leandro Pereira dos Santos, G. E. Vieira, H. V. D. R. Leite, M. T. Steiner","doi":"10.1155/2012/312132","DOIUrl":null,"url":null,"abstract":"The main objective of a production scheduling system is to assign tasks (orders or jobs) to resources and sequence them as efficiently and economically (optimised) as possible. Achieving this goal is a difficult task in complex environment where capacity is usually limited. In these scenarios, finding an optimal solution—if possible—demands a large amount of computer time. For this reason, in many cases, a good solution that is quickly found is preferred. In such situations, the use of metaheuristics is an appropriate strategy. In these last two decades, some out-of-the-shelf systems have been developed using such techniques. This paper presents and analyses the development of a shop-floor scheduling system that uses ant colony optimisation (ACO) in a backward scheduling problem in a manufacturing scenario with single-stage processing, parallel resources, and flexible routings. This scenario was found in a large food industry where the corresponding author worked as consultant for more than a year. This work demonstrates the applicability of this artificial intelligence technique. In fact, ACO proved to be as efficient as branch-and-bound, however, executing much faster.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"65 1","pages":"312132:1-312132:12"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ant Colony Optimisation for Backward Production Scheduling\",\"authors\":\"Leandro Pereira dos Santos, G. E. Vieira, H. V. D. R. Leite, M. T. Steiner\",\"doi\":\"10.1155/2012/312132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of a production scheduling system is to assign tasks (orders or jobs) to resources and sequence them as efficiently and economically (optimised) as possible. Achieving this goal is a difficult task in complex environment where capacity is usually limited. In these scenarios, finding an optimal solution—if possible—demands a large amount of computer time. For this reason, in many cases, a good solution that is quickly found is preferred. In such situations, the use of metaheuristics is an appropriate strategy. In these last two decades, some out-of-the-shelf systems have been developed using such techniques. This paper presents and analyses the development of a shop-floor scheduling system that uses ant colony optimisation (ACO) in a backward scheduling problem in a manufacturing scenario with single-stage processing, parallel resources, and flexible routings. This scenario was found in a large food industry where the corresponding author worked as consultant for more than a year. This work demonstrates the applicability of this artificial intelligence technique. In fact, ACO proved to be as efficient as branch-and-bound, however, executing much faster.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":\"65 1\",\"pages\":\"312132:1-312132:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/312132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/312132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ant Colony Optimisation for Backward Production Scheduling
The main objective of a production scheduling system is to assign tasks (orders or jobs) to resources and sequence them as efficiently and economically (optimised) as possible. Achieving this goal is a difficult task in complex environment where capacity is usually limited. In these scenarios, finding an optimal solution—if possible—demands a large amount of computer time. For this reason, in many cases, a good solution that is quickly found is preferred. In such situations, the use of metaheuristics is an appropriate strategy. In these last two decades, some out-of-the-shelf systems have been developed using such techniques. This paper presents and analyses the development of a shop-floor scheduling system that uses ant colony optimisation (ACO) in a backward scheduling problem in a manufacturing scenario with single-stage processing, parallel resources, and flexible routings. This scenario was found in a large food industry where the corresponding author worked as consultant for more than a year. This work demonstrates the applicability of this artificial intelligence technique. In fact, ACO proved to be as efficient as branch-and-bound, however, executing much faster.