{"title":"金星267-GHz JCMT观测的统计可靠性:没有磷化氢吸收的显著证据","authors":"M. Thompson","doi":"10.1093/mnrasl/slaa187","DOIUrl":null,"url":null,"abstract":"In the light of the recent announcement of the discovery of the potential biosignature phosphine in the atmosphere of Venus I present an independent reanalysis of the original JCMT data to assess the statistical reliability of the detection. Two line detection methods are explored, low order polynomial fits and higher order multiple polynomial fits. A non-parametric bootstrap analysis reveals that neither line detection method is able to recover a statistically significant detection. Similar to the results of other reanalyses of ALMA Venus spectra, the polynomial fitting process results in false positive detections in the JCMT spectrum. There is thus no significant evidence for phosphine absorption in the JCMT Venus spectra.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"834 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The statistical reliability of 267-GHz JCMT observations of Venus: no significant evidence for phosphine absorption\",\"authors\":\"M. Thompson\",\"doi\":\"10.1093/mnrasl/slaa187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the light of the recent announcement of the discovery of the potential biosignature phosphine in the atmosphere of Venus I present an independent reanalysis of the original JCMT data to assess the statistical reliability of the detection. Two line detection methods are explored, low order polynomial fits and higher order multiple polynomial fits. A non-parametric bootstrap analysis reveals that neither line detection method is able to recover a statistically significant detection. Similar to the results of other reanalyses of ALMA Venus spectra, the polynomial fitting process results in false positive detections in the JCMT spectrum. There is thus no significant evidence for phosphine absorption in the JCMT Venus spectra.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"834 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slaa187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slaa187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The statistical reliability of 267-GHz JCMT observations of Venus: no significant evidence for phosphine absorption
In the light of the recent announcement of the discovery of the potential biosignature phosphine in the atmosphere of Venus I present an independent reanalysis of the original JCMT data to assess the statistical reliability of the detection. Two line detection methods are explored, low order polynomial fits and higher order multiple polynomial fits. A non-parametric bootstrap analysis reveals that neither line detection method is able to recover a statistically significant detection. Similar to the results of other reanalyses of ALMA Venus spectra, the polynomial fitting process results in false positive detections in the JCMT spectrum. There is thus no significant evidence for phosphine absorption in the JCMT Venus spectra.