S.Ya. Hilgurt, Anatolii M. Davydenko, T.V. Matovka, Mykhailo P. Prygara
{"title":"基于签名的网络安全硬件解决方案分析工具","authors":"S.Ya. Hilgurt, Anatolii M. Davydenko, T.V. Matovka, Mykhailo P. Prygara","doi":"10.13052/jcsm2245-1439.123.5","DOIUrl":null,"url":null,"abstract":"When creating signature-based cybersecurity systems for network intrusion detection (NIDS), spam filtering, protection against viruses, worms, etc., developers have to use hardware devices such as field programmable gate arrays (FPGA), since software solutions can no longer support the necessary speeds. There are many different approaches to build hardware circuits for pattern matching (where patterns are the parts of signatures). Choosing the optimal technical solution for certain conditions is not a trivial task. Developers of such hardware tend to act intuitively, heuristically. In this article, we provide tools to help them intelligently build cybersecurity systems using FPGAs. For the qualitative analysis of FPGA-based matching schemes, the classification of efficiency criteria and related indicators is considered. This classification was compiled by studying a large number of practical developments of FPGA-based cybersecurity systems, primarily NIDS. A method of rapid calculating numerical characteristics of the FPGA-based signature system components is proposed as a quantitative assessment tool. This method based on the use of so-called estimation functions allows avoiding the time-consuming execution of the digital circuit synthesis procedure. A number of experiments were carried out with the most promising matching schemes, allowing evaluating the above-mentioned tools. The rapid quantification method allows developers of hardware-accelerated cybersecurity systems to even apply it at each iteration within the optimization procedure cycle.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"28 1","pages":"339-366"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tools for Analyzing Signature-Based Hardware Solutions for Cyber Security Systems\",\"authors\":\"S.Ya. Hilgurt, Anatolii M. Davydenko, T.V. Matovka, Mykhailo P. Prygara\",\"doi\":\"10.13052/jcsm2245-1439.123.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When creating signature-based cybersecurity systems for network intrusion detection (NIDS), spam filtering, protection against viruses, worms, etc., developers have to use hardware devices such as field programmable gate arrays (FPGA), since software solutions can no longer support the necessary speeds. There are many different approaches to build hardware circuits for pattern matching (where patterns are the parts of signatures). Choosing the optimal technical solution for certain conditions is not a trivial task. Developers of such hardware tend to act intuitively, heuristically. In this article, we provide tools to help them intelligently build cybersecurity systems using FPGAs. For the qualitative analysis of FPGA-based matching schemes, the classification of efficiency criteria and related indicators is considered. This classification was compiled by studying a large number of practical developments of FPGA-based cybersecurity systems, primarily NIDS. A method of rapid calculating numerical characteristics of the FPGA-based signature system components is proposed as a quantitative assessment tool. This method based on the use of so-called estimation functions allows avoiding the time-consuming execution of the digital circuit synthesis procedure. A number of experiments were carried out with the most promising matching schemes, allowing evaluating the above-mentioned tools. The rapid quantification method allows developers of hardware-accelerated cybersecurity systems to even apply it at each iteration within the optimization procedure cycle.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"28 1\",\"pages\":\"339-366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.123.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.123.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Tools for Analyzing Signature-Based Hardware Solutions for Cyber Security Systems
When creating signature-based cybersecurity systems for network intrusion detection (NIDS), spam filtering, protection against viruses, worms, etc., developers have to use hardware devices such as field programmable gate arrays (FPGA), since software solutions can no longer support the necessary speeds. There are many different approaches to build hardware circuits for pattern matching (where patterns are the parts of signatures). Choosing the optimal technical solution for certain conditions is not a trivial task. Developers of such hardware tend to act intuitively, heuristically. In this article, we provide tools to help them intelligently build cybersecurity systems using FPGAs. For the qualitative analysis of FPGA-based matching schemes, the classification of efficiency criteria and related indicators is considered. This classification was compiled by studying a large number of practical developments of FPGA-based cybersecurity systems, primarily NIDS. A method of rapid calculating numerical characteristics of the FPGA-based signature system components is proposed as a quantitative assessment tool. This method based on the use of so-called estimation functions allows avoiding the time-consuming execution of the digital circuit synthesis procedure. A number of experiments were carried out with the most promising matching schemes, allowing evaluating the above-mentioned tools. The rapid quantification method allows developers of hardware-accelerated cybersecurity systems to even apply it at each iteration within the optimization procedure cycle.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.