M. Schneider, M. Schalnat, J. Macdonald, S. Doty, E. Bagdy, N. Keller, J. Ennis
{"title":"大电流、高温电容器:最新发展及未来展望","authors":"M. Schneider, M. Schalnat, J. Macdonald, S. Doty, E. Bagdy, N. Keller, J. Ennis","doi":"10.1109/PLASMA.2013.6634795","DOIUrl":null,"url":null,"abstract":"Summary form only given. There is a significant need for high temperature capacitors for a variety of operating conditions including pulse power, and high frequency power conditioning applications at temperatures between 125°C and 200°C. Here we cover several new developments in high temperature capacitor technologies presenting results on thin film capacitors useful for long life, high energy density, and high reliability. Additionally, results are presented on an improved very-high temperature film (200°C and higher) with more reliable self-healing, longer lifetime, and higher energy densities. Results from metallized film capacitors with improved termination demonstrating drastic improvements in current carrying capabilities in both CW RMS current and peak pulse current regimes are also presented. Finally, a theoretical high temperature capacitor utilizing a combination of these technologies is discussed and compared to existing COTS and SOTA capacitors.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"124 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High current, high temperature capacitors: Recent developments and future prospects\",\"authors\":\"M. Schneider, M. Schalnat, J. Macdonald, S. Doty, E. Bagdy, N. Keller, J. Ennis\",\"doi\":\"10.1109/PLASMA.2013.6634795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. There is a significant need for high temperature capacitors for a variety of operating conditions including pulse power, and high frequency power conditioning applications at temperatures between 125°C and 200°C. Here we cover several new developments in high temperature capacitor technologies presenting results on thin film capacitors useful for long life, high energy density, and high reliability. Additionally, results are presented on an improved very-high temperature film (200°C and higher) with more reliable self-healing, longer lifetime, and higher energy densities. Results from metallized film capacitors with improved termination demonstrating drastic improvements in current carrying capabilities in both CW RMS current and peak pulse current regimes are also presented. Finally, a theoretical high temperature capacitor utilizing a combination of these technologies is discussed and compared to existing COTS and SOTA capacitors.\",\"PeriodicalId\":6313,\"journal\":{\"name\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"124 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2013.6634795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6634795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High current, high temperature capacitors: Recent developments and future prospects
Summary form only given. There is a significant need for high temperature capacitors for a variety of operating conditions including pulse power, and high frequency power conditioning applications at temperatures between 125°C and 200°C. Here we cover several new developments in high temperature capacitor technologies presenting results on thin film capacitors useful for long life, high energy density, and high reliability. Additionally, results are presented on an improved very-high temperature film (200°C and higher) with more reliable self-healing, longer lifetime, and higher energy densities. Results from metallized film capacitors with improved termination demonstrating drastic improvements in current carrying capabilities in both CW RMS current and peak pulse current regimes are also presented. Finally, a theoretical high temperature capacitor utilizing a combination of these technologies is discussed and compared to existing COTS and SOTA capacitors.